基底温度对热解双相 Cu2O-CuO 薄膜的结构、形态和光学特性的影响

P.R. Jubu , J.D. Fanafa , A.B. Atsuwe , C. Mbakaan , Y. Yusof , O.S. Obaseki , M.B. Ochang , E. Danladi , V. Mbah , T. Mkanan
{"title":"基底温度对热解双相 Cu2O-CuO 薄膜的结构、形态和光学特性的影响","authors":"P.R. Jubu ,&nbsp;J.D. Fanafa ,&nbsp;A.B. Atsuwe ,&nbsp;C. Mbakaan ,&nbsp;Y. Yusof ,&nbsp;O.S. Obaseki ,&nbsp;M.B. Ochang ,&nbsp;E. Danladi ,&nbsp;V. Mbah ,&nbsp;T. Mkanan","doi":"10.1016/j.rinma.2024.100599","DOIUrl":null,"url":null,"abstract":"<div><p>Multiphase nanomaterials are fascinating due to the synergistic effect between the crystalline phases that lead to improved device performance. Publications are available for the synthesis of monophasic copper oxides, such as Cu<sub>2</sub>O and CuO, and the mixed-phase Cu<sub>2</sub>O–CuO counterpart using different synthesis methods. However, literature report is scarce that focuses on the fabrication of bi-phase Cu<sub>2</sub>O–CuO thin films by the spray pyrolysis technique without phase transformation to form the monophasic counterparts. The present work attempts to prepare solely mixed-phase Cu<sub>2</sub>O–CuO films through small incremental change in substrate temperature, in steps of 20 <span><math><mrow><mo>°C</mo></mrow></math></span>. Structural analysis of the pyrolyzed films revealed the formation of a bi-phase Cu<sub>2</sub>O–CuO crystal system. The crystallite size increased from 18.64 to 23.94 nm, microstrain decreased from 7.134 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> to 5.625 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span>, while stacking faults decreased from 3.753 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> to 2.942 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> with an increase in temperature. Microstructural analysis showed nanoaggregates with increased particle size at increasing temperature. The films exhibited a common optical bandgap of 2.61 eV. The values of the static refractive index and optical electronegativity were found to be 2.47 and 0.70, respectively. The surface roughness increased from 41.3 to 90.9 nm with substrate temperature.</p></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"23 ","pages":"Article 100599"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590048X24000736/pdfft?md5=28f60fbd7bc56e0339618ea46094df02&pid=1-s2.0-S2590048X24000736-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Substrate temperature effect on the structural, morphological and optical properties of pyrolyzed bi-phase Cu2O–CuO thin films\",\"authors\":\"P.R. Jubu ,&nbsp;J.D. Fanafa ,&nbsp;A.B. Atsuwe ,&nbsp;C. Mbakaan ,&nbsp;Y. Yusof ,&nbsp;O.S. Obaseki ,&nbsp;M.B. Ochang ,&nbsp;E. Danladi ,&nbsp;V. Mbah ,&nbsp;T. Mkanan\",\"doi\":\"10.1016/j.rinma.2024.100599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiphase nanomaterials are fascinating due to the synergistic effect between the crystalline phases that lead to improved device performance. Publications are available for the synthesis of monophasic copper oxides, such as Cu<sub>2</sub>O and CuO, and the mixed-phase Cu<sub>2</sub>O–CuO counterpart using different synthesis methods. However, literature report is scarce that focuses on the fabrication of bi-phase Cu<sub>2</sub>O–CuO thin films by the spray pyrolysis technique without phase transformation to form the monophasic counterparts. The present work attempts to prepare solely mixed-phase Cu<sub>2</sub>O–CuO films through small incremental change in substrate temperature, in steps of 20 <span><math><mrow><mo>°C</mo></mrow></math></span>. Structural analysis of the pyrolyzed films revealed the formation of a bi-phase Cu<sub>2</sub>O–CuO crystal system. The crystallite size increased from 18.64 to 23.94 nm, microstrain decreased from 7.134 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span> to 5.625 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></math></span>, while stacking faults decreased from 3.753 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> to 2.942 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> with an increase in temperature. Microstructural analysis showed nanoaggregates with increased particle size at increasing temperature. The films exhibited a common optical bandgap of 2.61 eV. The values of the static refractive index and optical electronegativity were found to be 2.47 and 0.70, respectively. The surface roughness increased from 41.3 to 90.9 nm with substrate temperature.</p></div>\",\"PeriodicalId\":101087,\"journal\":{\"name\":\"Results in Materials\",\"volume\":\"23 \",\"pages\":\"Article 100599\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590048X24000736/pdfft?md5=28f60fbd7bc56e0339618ea46094df02&pid=1-s2.0-S2590048X24000736-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590048X24000736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590048X24000736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多相纳米材料的迷人之处在于晶体相之间的协同效应,可提高设备性能。目前已有文献采用不同的合成方法合成了单相铜氧化物(如 Cu2O 和 CuO)以及对应的 Cu2O-CuO 混合相。然而,关于通过喷雾热解技术制备双相 Cu2O-CuO 薄膜而不发生相变以形成单相对应物的文献报道却很少。本研究试图通过以 20 °C 为单位的基底温度小幅度递增来制备完全混合相的 Cu2O-CuO 薄膜。热解薄膜的结构分析表明形成了双相 Cu2O-CuO 晶系。随着温度的升高,晶粒大小从 18.64 纳米增加到 23.94 纳米,微应变从 7.134 ×10-4 减小到 5.625 ×10-4 ,而堆积断层从 3.753 ×10-3 减小到 2.942 ×10-3 。微观结构分析表明,在温度升高时,纳米聚集体的粒径增大。薄膜显示出 2.61 eV 的共同光带隙。静态折射率和光学电负性值分别为 2.47 和 0.70。随着基底温度的升高,表面粗糙度从 41.3 纳米增加到 90.9 纳米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Substrate temperature effect on the structural, morphological and optical properties of pyrolyzed bi-phase Cu2O–CuO thin films

Multiphase nanomaterials are fascinating due to the synergistic effect between the crystalline phases that lead to improved device performance. Publications are available for the synthesis of monophasic copper oxides, such as Cu2O and CuO, and the mixed-phase Cu2O–CuO counterpart using different synthesis methods. However, literature report is scarce that focuses on the fabrication of bi-phase Cu2O–CuO thin films by the spray pyrolysis technique without phase transformation to form the monophasic counterparts. The present work attempts to prepare solely mixed-phase Cu2O–CuO films through small incremental change in substrate temperature, in steps of 20 °C. Structural analysis of the pyrolyzed films revealed the formation of a bi-phase Cu2O–CuO crystal system. The crystallite size increased from 18.64 to 23.94 nm, microstrain decreased from 7.134 ×104 to 5.625 ×104, while stacking faults decreased from 3.753 ×103 to 2.942 ×103 with an increase in temperature. Microstructural analysis showed nanoaggregates with increased particle size at increasing temperature. The films exhibited a common optical bandgap of 2.61 eV. The values of the static refractive index and optical electronegativity were found to be 2.47 and 0.70, respectively. The surface roughness increased from 41.3 to 90.9 nm with substrate temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信