Ikenna D. Uwanuakwa , Ilham Yahya Amir , Lyce Ndolo Umba
{"title":"增强型沥青动态模量预测:人工蜂鸟算法优化提升树的详细分析","authors":"Ikenna D. Uwanuakwa , Ilham Yahya Amir , Lyce Ndolo Umba","doi":"10.1016/j.jreng.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree (AHA-boosted) model for predicting the dynamic modulus (<em>E</em>∗) of hot mix asphalt concrete. Using a substantial dataset from NCHRP Report-547, the model was trained and rigorously tested. Performance metrics, specifically RMSE, MAE, and <em>R</em><sup>2</sup>, were employed to assess the model's predictive accuracy, robustness, and generalisability. When benchmarked against well-established models like support vector machines (SVM) and gaussian process regression (GPR), the AHA-boosted model demonstrated enhanced performance. It achieved <em>R</em><sup>2</sup> values of 0.997 in training and 0.974 in testing, using the traditional Witczak NCHRP 1-40D model inputs. Incorporating features such as test temperature, frequency, and asphalt content led to a 1.23% increase in the test <em>R</em><sup>2</sup>, signifying an improvement in the model's accuracy. The study also explored feature importance and sensitivity through SHAP and permutation importance plots, highlighting binder complex modulus |<em>G</em>∗| as a key predictor. Although the AHA-boosted model shows promise, a slight decrease in <em>R</em><sup>2</sup> from training to testing indicates a need for further validation. Overall, this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete, making it a valuable asset for pavement engineering.</p></div>","PeriodicalId":100830,"journal":{"name":"Journal of Road Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2097049824000167/pdfft?md5=a6da64310fa9460fa9ec6b5fca7d08ba&pid=1-s2.0-S2097049824000167-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced asphalt dynamic modulus prediction: A detailed analysis of artificial hummingbird algorithm-optimised boosted trees\",\"authors\":\"Ikenna D. Uwanuakwa , Ilham Yahya Amir , Lyce Ndolo Umba\",\"doi\":\"10.1016/j.jreng.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree (AHA-boosted) model for predicting the dynamic modulus (<em>E</em>∗) of hot mix asphalt concrete. Using a substantial dataset from NCHRP Report-547, the model was trained and rigorously tested. Performance metrics, specifically RMSE, MAE, and <em>R</em><sup>2</sup>, were employed to assess the model's predictive accuracy, robustness, and generalisability. When benchmarked against well-established models like support vector machines (SVM) and gaussian process regression (GPR), the AHA-boosted model demonstrated enhanced performance. It achieved <em>R</em><sup>2</sup> values of 0.997 in training and 0.974 in testing, using the traditional Witczak NCHRP 1-40D model inputs. Incorporating features such as test temperature, frequency, and asphalt content led to a 1.23% increase in the test <em>R</em><sup>2</sup>, signifying an improvement in the model's accuracy. The study also explored feature importance and sensitivity through SHAP and permutation importance plots, highlighting binder complex modulus |<em>G</em>∗| as a key predictor. Although the AHA-boosted model shows promise, a slight decrease in <em>R</em><sup>2</sup> from training to testing indicates a need for further validation. Overall, this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete, making it a valuable asset for pavement engineering.</p></div>\",\"PeriodicalId\":100830,\"journal\":{\"name\":\"Journal of Road Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2097049824000167/pdfft?md5=a6da64310fa9460fa9ec6b5fca7d08ba&pid=1-s2.0-S2097049824000167-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Road Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2097049824000167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Road Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2097049824000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced asphalt dynamic modulus prediction: A detailed analysis of artificial hummingbird algorithm-optimised boosted trees
This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree (AHA-boosted) model for predicting the dynamic modulus (E∗) of hot mix asphalt concrete. Using a substantial dataset from NCHRP Report-547, the model was trained and rigorously tested. Performance metrics, specifically RMSE, MAE, and R2, were employed to assess the model's predictive accuracy, robustness, and generalisability. When benchmarked against well-established models like support vector machines (SVM) and gaussian process regression (GPR), the AHA-boosted model demonstrated enhanced performance. It achieved R2 values of 0.997 in training and 0.974 in testing, using the traditional Witczak NCHRP 1-40D model inputs. Incorporating features such as test temperature, frequency, and asphalt content led to a 1.23% increase in the test R2, signifying an improvement in the model's accuracy. The study also explored feature importance and sensitivity through SHAP and permutation importance plots, highlighting binder complex modulus |G∗| as a key predictor. Although the AHA-boosted model shows promise, a slight decrease in R2 from training to testing indicates a need for further validation. Overall, this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete, making it a valuable asset for pavement engineering.