R5 中能量临界热方程的长时动力学

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zaizheng Li , Juncheng Wei , Qidi Zhang , Yifu Zhou
{"title":"R5 中能量临界热方程的长时动力学","authors":"Zaizheng Li ,&nbsp;Juncheng Wei ,&nbsp;Qidi Zhang ,&nbsp;Yifu Zhou","doi":"10.1016/j.na.2024.113594","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the long-time behavior of global solutions to the energy critical heat equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mi>u</mi><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>×</mo><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>For <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> sufficiently large, we show the existence of positive solutions for a class of initial value <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup></mrow></math></span> as <span><math><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>→</mo><mi>∞</mi></mrow></math></span> with <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> such that the global solutions behave asymptotically <span><span><span><math><mrow><msub><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>∼</mo><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>γ</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>2</mn></mtd></mtr><mtr><mtd><msup><mrow><mrow><mo>(</mo><mo>ln</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>γ</mi><mo>=</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>γ</mi><mo>&gt;</mo><mn>2</mn></mtd></mtr></mtable></mrow></mfenced><mtext>for</mtext><mi>t</mi><mo>&gt;</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span></span></span>which is slower than the self-similar time decay <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span>. These rates are inspired by Fila and King (2012, Conjecture 1.1).</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time dynamics for the energy critical heat equation in R5\",\"authors\":\"Zaizheng Li ,&nbsp;Juncheng Wei ,&nbsp;Qidi Zhang ,&nbsp;Yifu Zhou\",\"doi\":\"10.1016/j.na.2024.113594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the long-time behavior of global solutions to the energy critical heat equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span> <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mi>u</mi><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>×</mo><mrow><mo>(</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>For <span><math><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> sufficiently large, we show the existence of positive solutions for a class of initial value <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>γ</mi></mrow></msup></mrow></math></span> as <span><math><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>→</mo><mi>∞</mi></mrow></math></span> with <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> such that the global solutions behave asymptotically <span><span><span><math><mrow><msub><mrow><mo>‖</mo><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>∼</mo><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn><mrow><mo>(</mo><mn>2</mn><mo>−</mo><mi>γ</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>&lt;</mo><mi>γ</mi><mo>&lt;</mo><mn>2</mn></mtd></mtr><mtr><mtd><msup><mrow><mrow><mo>(</mo><mo>ln</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>γ</mi><mo>=</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>1</mn><mspace></mspace><mspace></mspace></mtd><mtd><mtext>if</mtext><mspace></mspace><mi>γ</mi><mo>&gt;</mo><mn>2</mn></mtd></mtr></mtable></mrow></mfenced><mtext>for</mtext><mi>t</mi><mo>&gt;</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span></span></span>which is slower than the self-similar time decay <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span>. These rates are inspired by Fila and King (2012, Conjecture 1.1).</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24001135\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001135","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 R5 中能量临界热方程 ∂tu=Δu+|u|43uinR5×(t0,∞),u(⋅,t0)=u0inR5 全局解的长期行为。对于足够大的 t0,我们证明了一类初始值 u0(x)∼|x|-γ 为 |x|→∞ 且 γ> 的正解的存在;32,使得全局解表现为渐近‖u(⋅,t)‖L∞(R5)∼t-3(2-γ)2if32<γ<2(lnt)-3ifγ=21ifγ>2fort>t0,比自相似时间衰减 t-34 慢。这些速率受到 Fila 和 King(2012,猜想 1.1)的启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-time dynamics for the energy critical heat equation in R5

We investigate the long-time behavior of global solutions to the energy critical heat equation in R5 tu=Δu+|u|43uinR5×(t0,),u(,t0)=u0inR5.For t0 sufficiently large, we show the existence of positive solutions for a class of initial value u0(x)|x|γ as |x| with γ>32 such that the global solutions behave asymptotically u(,t)L(R5)t3(2γ)2if32<γ<2(lnt)3ifγ=21ifγ>2fort>t0,which is slower than the self-similar time decay t34. These rates are inspired by Fila and King (2012, Conjecture 1.1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信