Fanhou Kong , Shuli Li , Suoqi Zhao , Huiwen Li , Lin Li , Zhenting Zang , Rui Zhang , Hongrui Liu , Lehan Wang , Changjiu Li , Keng H. Chung
{"title":"准确识别玻璃结晶有助于选择高电子传导性材料","authors":"Fanhou Kong , Shuli Li , Suoqi Zhao , Huiwen Li , Lin Li , Zhenting Zang , Rui Zhang , Hongrui Liu , Lehan Wang , Changjiu Li , Keng H. Chung","doi":"10.1016/j.pnsc.2024.04.013","DOIUrl":null,"url":null,"abstract":"<div><p>Though the current research on vanadium-based glass electrodes has made great progress, the conductivity theory of V-based glasses has not been obviously improved and crystals cannot be positioned precisely. The changes in the valence state of V<sup>3+</sup>, V<sup>4+</sup> and V<sup>5+</sup> are regulated by the strong reducing agent Fe<sub>2</sub>P to realize valence bond transformation of the amorphous electrode, explore the redox process of multi-electron reactions and further optimize the conductivity of electrode materials. VPFe2 and VPFe3 precipitate VO<sub>2</sub> crystals and VPFe4 precipitates VO<sub>2</sub> and V<sub>6</sub>O<sub>11</sub> crystals. Electron back-scattered diffraction was used to accurately identify the distribution and specific positions of both types of crystals. V<sub>6</sub>O<sub>11</sub> crystals exhibit a strong texture according to pole figure and inverse pole figure. XPS reveals that Fe<sub>2</sub>P and V<sub>2</sub>O<sub>5</sub>, undergo a redox reaction during the high-temperature melting process, where V<sup>5+</sup> is reduced to V<sup>4+</sup> and V<sup>3+</sup> and V<sup>4+</sup> renders a positive influence on conductivity. The addition of Fe<sub>2</sub>P increases the content of V<sup>4+</sup> in the glass and VPFe3 glass contains the highest content of V<sup>4+</sup>, leading to the highest electronic conductivity. V<sub>2</sub>O<sub>5</sub> transforms into VO<sub>2</sub> crystals and VO<sub>2</sub> transforms into V<sub>6</sub>O<sub>11</sub> with the increase of Fe<sub>2</sub>P content. The type of nanocrystal precipitation in glass affects electronic conductivity.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate identification of glass crystallization helps in selecting high electronic conductivity materials\",\"authors\":\"Fanhou Kong , Shuli Li , Suoqi Zhao , Huiwen Li , Lin Li , Zhenting Zang , Rui Zhang , Hongrui Liu , Lehan Wang , Changjiu Li , Keng H. Chung\",\"doi\":\"10.1016/j.pnsc.2024.04.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Though the current research on vanadium-based glass electrodes has made great progress, the conductivity theory of V-based glasses has not been obviously improved and crystals cannot be positioned precisely. The changes in the valence state of V<sup>3+</sup>, V<sup>4+</sup> and V<sup>5+</sup> are regulated by the strong reducing agent Fe<sub>2</sub>P to realize valence bond transformation of the amorphous electrode, explore the redox process of multi-electron reactions and further optimize the conductivity of electrode materials. VPFe2 and VPFe3 precipitate VO<sub>2</sub> crystals and VPFe4 precipitates VO<sub>2</sub> and V<sub>6</sub>O<sub>11</sub> crystals. Electron back-scattered diffraction was used to accurately identify the distribution and specific positions of both types of crystals. V<sub>6</sub>O<sub>11</sub> crystals exhibit a strong texture according to pole figure and inverse pole figure. XPS reveals that Fe<sub>2</sub>P and V<sub>2</sub>O<sub>5</sub>, undergo a redox reaction during the high-temperature melting process, where V<sup>5+</sup> is reduced to V<sup>4+</sup> and V<sup>3+</sup> and V<sup>4+</sup> renders a positive influence on conductivity. The addition of Fe<sub>2</sub>P increases the content of V<sup>4+</sup> in the glass and VPFe3 glass contains the highest content of V<sup>4+</sup>, leading to the highest electronic conductivity. V<sub>2</sub>O<sub>5</sub> transforms into VO<sub>2</sub> crystals and VO<sub>2</sub> transforms into V<sub>6</sub>O<sub>11</sub> with the increase of Fe<sub>2</sub>P content. The type of nanocrystal precipitation in glass affects electronic conductivity.</p></div>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002007124001047\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001047","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Accurate identification of glass crystallization helps in selecting high electronic conductivity materials
Though the current research on vanadium-based glass electrodes has made great progress, the conductivity theory of V-based glasses has not been obviously improved and crystals cannot be positioned precisely. The changes in the valence state of V3+, V4+ and V5+ are regulated by the strong reducing agent Fe2P to realize valence bond transformation of the amorphous electrode, explore the redox process of multi-electron reactions and further optimize the conductivity of electrode materials. VPFe2 and VPFe3 precipitate VO2 crystals and VPFe4 precipitates VO2 and V6O11 crystals. Electron back-scattered diffraction was used to accurately identify the distribution and specific positions of both types of crystals. V6O11 crystals exhibit a strong texture according to pole figure and inverse pole figure. XPS reveals that Fe2P and V2O5, undergo a redox reaction during the high-temperature melting process, where V5+ is reduced to V4+ and V3+ and V4+ renders a positive influence on conductivity. The addition of Fe2P increases the content of V4+ in the glass and VPFe3 glass contains the highest content of V4+, leading to the highest electronic conductivity. V2O5 transforms into VO2 crystals and VO2 transforms into V6O11 with the increase of Fe2P content. The type of nanocrystal precipitation in glass affects electronic conductivity.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.