分析胰高血糖素受体对 1 型糖尿病患者血糖动态的影响

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Clara Furió-Novejarque , Iván Sala-Mira , Ajenthen G. Ranjan , Kirsten Nørgaard , José-Luis Díez , John Bagterp Jørgensen , Jorge Bondia
{"title":"分析胰高血糖素受体对 1 型糖尿病患者血糖动态的影响","authors":"Clara Furió-Novejarque ,&nbsp;Iván Sala-Mira ,&nbsp;Ajenthen G. Ranjan ,&nbsp;Kirsten Nørgaard ,&nbsp;José-Luis Díez ,&nbsp;John Bagterp Jørgensen ,&nbsp;Jorge Bondia","doi":"10.1016/j.ifacsc.2024.100272","DOIUrl":null,"url":null,"abstract":"<div><p>The glucagon effect is understudied in type 1 diabetes (T1D) simulators, without a clear consensus on the pharmacodynamics of glucagon over glucose. Glucagon receptors dynamics could present a significant contribution to T1D simulators, making them more physiologically accurate without an excessive increase in complexity. This work analyzes the receptors model contributions to glucose dynamics using a model proposed in previous work. Then, the model is assessed from two different perspectives: (1) A clinical dataset of the influence of diet (high or low carbohydrate content) on two consecutive glucagon doses (100 and 500 <span><math><mi>μ</mi></math></span>g) is used to identify the model parameters and (2) three other glucagon action models from the literature are also identified to serve as comparators. Different identification methods are used to adapt to the distinctive features of the dataset. The root mean square error (RMSE) and the Akaike Information Criterion (AIC) were the discerning metrics used to compare the models fittings. Results show that the receptors model offers the lowest RMSE and AIC in contrast to the comparators. This model will hence be helpful in the development of accurate T1D simulators.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"29 ","pages":"Article 100272"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468601824000336/pdfft?md5=07540efc7b5c2f9fadcad4a006bc0cea&pid=1-s2.0-S2468601824000336-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Analysis on the contribution of glucagon receptors to glucose dynamics in type 1 diabetes\",\"authors\":\"Clara Furió-Novejarque ,&nbsp;Iván Sala-Mira ,&nbsp;Ajenthen G. Ranjan ,&nbsp;Kirsten Nørgaard ,&nbsp;José-Luis Díez ,&nbsp;John Bagterp Jørgensen ,&nbsp;Jorge Bondia\",\"doi\":\"10.1016/j.ifacsc.2024.100272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The glucagon effect is understudied in type 1 diabetes (T1D) simulators, without a clear consensus on the pharmacodynamics of glucagon over glucose. Glucagon receptors dynamics could present a significant contribution to T1D simulators, making them more physiologically accurate without an excessive increase in complexity. This work analyzes the receptors model contributions to glucose dynamics using a model proposed in previous work. Then, the model is assessed from two different perspectives: (1) A clinical dataset of the influence of diet (high or low carbohydrate content) on two consecutive glucagon doses (100 and 500 <span><math><mi>μ</mi></math></span>g) is used to identify the model parameters and (2) three other glucagon action models from the literature are also identified to serve as comparators. Different identification methods are used to adapt to the distinctive features of the dataset. The root mean square error (RMSE) and the Akaike Information Criterion (AIC) were the discerning metrics used to compare the models fittings. Results show that the receptors model offers the lowest RMSE and AIC in contrast to the comparators. This model will hence be helpful in the development of accurate T1D simulators.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"29 \",\"pages\":\"Article 100272\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000336/pdfft?md5=07540efc7b5c2f9fadcad4a006bc0cea&pid=1-s2.0-S2468601824000336-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在 1 型糖尿病(T1D)模拟器中,对胰高血糖素效应的研究不足,对胰高血糖素相对于葡萄糖的药效学尚未达成明确共识。胰高血糖素受体动力学可为 T1D 模拟器做出重大贡献,使模拟器在不增加过多复杂性的情况下更符合生理学原理。这项工作利用之前工作中提出的模型分析了受体模型对葡萄糖动力学的贡献。然后,从两个不同的角度对模型进行评估:(1) 使用饮食(高或低碳水化合物含量)对两个连续胰高血糖素剂量(100 和 500 μg)影响的临床数据集来确定模型参数;(2) 还从文献中确定了其他三个胰高血糖素作用模型作为比较对象。为适应数据集的显著特点,采用了不同的识别方法。均方根误差(RMSE)和阿凯克信息准则(AIC)是用于比较模型拟合的判别指标。结果显示,与其他比较模型相比,受体模型的 RMSE 和 AIC 最低。因此,该模型将有助于开发精确的 T1D 模拟器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis on the contribution of glucagon receptors to glucose dynamics in type 1 diabetes

The glucagon effect is understudied in type 1 diabetes (T1D) simulators, without a clear consensus on the pharmacodynamics of glucagon over glucose. Glucagon receptors dynamics could present a significant contribution to T1D simulators, making them more physiologically accurate without an excessive increase in complexity. This work analyzes the receptors model contributions to glucose dynamics using a model proposed in previous work. Then, the model is assessed from two different perspectives: (1) A clinical dataset of the influence of diet (high or low carbohydrate content) on two consecutive glucagon doses (100 and 500 μg) is used to identify the model parameters and (2) three other glucagon action models from the literature are also identified to serve as comparators. Different identification methods are used to adapt to the distinctive features of the dataset. The root mean square error (RMSE) and the Akaike Information Criterion (AIC) were the discerning metrics used to compare the models fittings. Results show that the receptors model offers the lowest RMSE and AIC in contrast to the comparators. This model will hence be helpful in the development of accurate T1D simulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信