深度学习、加强灌溉和农业经济学,确保新兴经济体的粮食安全

Q1 Social Sciences
Aktam U. Burkhanov , Elena G. Popkova , Diana R. Galoyan , Tatul M. Mkrtchyan , Bruno S. Sergi
{"title":"深度学习、加强灌溉和农业经济学,确保新兴经济体的粮食安全","authors":"Aktam U. Burkhanov ,&nbsp;Elena G. Popkova ,&nbsp;Diana R. Galoyan ,&nbsp;Tatul M. Mkrtchyan ,&nbsp;Bruno S. Sergi","doi":"10.1016/j.glt.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper delves into the critical issues of individual health, environmental health, and public health, which are all interconnected in the complex web of food security in emerging countries. Leveraging data from the top 10 countries with the lowest climate index values according to the Numbeo ranking, this article introduces a groundbreaking deep learning algorithm. This algorithm has the potential to revolutionize agricultural productivity and food security in the face of climate change, filling the gap in research on deep learning in agriculture. By enabling intelligent management, this algorithm could boost yields in agriculture, rendering it less dependent on climatic factors and ensuring the effectiveness of digital modernization. Furthermore, we explore the promising benefits of restoring ancient irrigation systems to elevate productivity levels. Our study provides definitive insights into deep learning techniques for yield prediction and productivity enhancement, offering a beacon of hope for the future of food security in emerging economies.</p></div>","PeriodicalId":33615,"journal":{"name":"Global Transitions","volume":"6 ","pages":"Pages 164-172"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589791824000094/pdfft?md5=9d9a935a60f9a7e128fe522ac6fc1fc3&pid=1-s2.0-S2589791824000094-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep learning, irrigation enhancement, and agricultural economics for ensuring food security in emerging economies\",\"authors\":\"Aktam U. Burkhanov ,&nbsp;Elena G. Popkova ,&nbsp;Diana R. Galoyan ,&nbsp;Tatul M. Mkrtchyan ,&nbsp;Bruno S. Sergi\",\"doi\":\"10.1016/j.glt.2024.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper delves into the critical issues of individual health, environmental health, and public health, which are all interconnected in the complex web of food security in emerging countries. Leveraging data from the top 10 countries with the lowest climate index values according to the Numbeo ranking, this article introduces a groundbreaking deep learning algorithm. This algorithm has the potential to revolutionize agricultural productivity and food security in the face of climate change, filling the gap in research on deep learning in agriculture. By enabling intelligent management, this algorithm could boost yields in agriculture, rendering it less dependent on climatic factors and ensuring the effectiveness of digital modernization. Furthermore, we explore the promising benefits of restoring ancient irrigation systems to elevate productivity levels. Our study provides definitive insights into deep learning techniques for yield prediction and productivity enhancement, offering a beacon of hope for the future of food security in emerging economies.</p></div>\",\"PeriodicalId\":33615,\"journal\":{\"name\":\"Global Transitions\",\"volume\":\"6 \",\"pages\":\"Pages 164-172\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589791824000094/pdfft?md5=9d9a935a60f9a7e128fe522ac6fc1fc3&pid=1-s2.0-S2589791824000094-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Transitions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589791824000094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589791824000094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文深入探讨了个人健康、环境健康和公共健康等关键问题,这些问题在新兴国家复杂的粮食安全网络中相互关联。本文利用根据 Numbeo 排名气候指数值最低的前 10 个国家的数据,介绍了一种开创性的深度学习算法。该算法有望在气候变化面前彻底改变农业生产率和粮食安全状况,填补了深度学习在农业领域的研究空白。通过实现智能管理,该算法可以提高农业产量,减少对气候因素的依赖,确保数字化现代化的有效性。此外,我们还探索了恢复古代灌溉系统以提高生产力水平的前景。我们的研究为产量预测和提高生产力的深度学习技术提供了明确的见解,为新兴经济体未来的粮食安全带来了希望的灯塔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning, irrigation enhancement, and agricultural economics for ensuring food security in emerging economies

This paper delves into the critical issues of individual health, environmental health, and public health, which are all interconnected in the complex web of food security in emerging countries. Leveraging data from the top 10 countries with the lowest climate index values according to the Numbeo ranking, this article introduces a groundbreaking deep learning algorithm. This algorithm has the potential to revolutionize agricultural productivity and food security in the face of climate change, filling the gap in research on deep learning in agriculture. By enabling intelligent management, this algorithm could boost yields in agriculture, rendering it less dependent on climatic factors and ensuring the effectiveness of digital modernization. Furthermore, we explore the promising benefits of restoring ancient irrigation systems to elevate productivity levels. Our study provides definitive insights into deep learning techniques for yield prediction and productivity enhancement, offering a beacon of hope for the future of food security in emerging economies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Transitions
Global Transitions Social Sciences-Development
CiteScore
18.90
自引率
0.00%
发文量
1
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信