基于钠离子电池电子结构工程的层状氧化物阴极加速:可逆相变、异常结构调节和稳定的阴离子氧化还原

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xin-Yu Zhang , Hai-Yan Hu , Xin-Yu Liu , Jingqiang Wang , Yi-Feng Liu , Yan-Fang Zhu , Ling-Yi Kong , Zhuang-Chun Jian , Shu-Lei Chou , Yao Xiao
{"title":"基于钠离子电池电子结构工程的层状氧化物阴极加速:可逆相变、异常结构调节和稳定的阴离子氧化还原","authors":"Xin-Yu Zhang ,&nbsp;Hai-Yan Hu ,&nbsp;Xin-Yu Liu ,&nbsp;Jingqiang Wang ,&nbsp;Yi-Feng Liu ,&nbsp;Yan-Fang Zhu ,&nbsp;Ling-Yi Kong ,&nbsp;Zhuang-Chun Jian ,&nbsp;Shu-Lei Chou ,&nbsp;Yao Xiao","doi":"10.1016/j.nanoen.2024.109905","DOIUrl":null,"url":null,"abstract":"<div><p>With the growing demand for energy storage, layered oxide cathodes (Na<sub>x</sub>TMO<sub>2</sub>) for sodium-ion batteries (SIBs) have become the spotlight for researchers. However, irreversible multiphase transformation and structural degradation, as well as lattice oxygen loss, hindered their commercialization. Electronic structure modulation based on the orbital hybridization concept is an important way to solve key scientific problems. Herein, due to its unique electronic structure, Sn is chosen as the proof of the conceptual element, and its effect on layered oxide cathode is summarized in three aspects: reversible phase transformation, abnormal structural regulation, and stable anionic redox. Firstly, the large size of Sn<sup>4+</sup> suppresses the sliding of the transition metal oxide (TMO<sub>2</sub>) layer and Na<sup>+</sup>/vacancy ordering as well as enhances the delocalization of electrons. Secondly, Sn with a similar ionic radius to other TM ions in the structure promotes the stacking of the O3 phase. What’s more, the distinctive electronic structure of Sn<sup>4+</sup> will enhance the operating voltage. Thirdly, a strong Sn-O bond stabilizes the lattice oxygen, promotes stable anion redox, and improves the energy density of the battery. Therefore, electronic structure modulation can provide technical direction for the development and industrialization of high-performance SIBs.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expediting layered oxide cathodes based on electronic structure engineering for sodium-ion batteries: Reversible phase transformation, abnormal structural regulation, and stable anionic redox\",\"authors\":\"Xin-Yu Zhang ,&nbsp;Hai-Yan Hu ,&nbsp;Xin-Yu Liu ,&nbsp;Jingqiang Wang ,&nbsp;Yi-Feng Liu ,&nbsp;Yan-Fang Zhu ,&nbsp;Ling-Yi Kong ,&nbsp;Zhuang-Chun Jian ,&nbsp;Shu-Lei Chou ,&nbsp;Yao Xiao\",\"doi\":\"10.1016/j.nanoen.2024.109905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the growing demand for energy storage, layered oxide cathodes (Na<sub>x</sub>TMO<sub>2</sub>) for sodium-ion batteries (SIBs) have become the spotlight for researchers. However, irreversible multiphase transformation and structural degradation, as well as lattice oxygen loss, hindered their commercialization. Electronic structure modulation based on the orbital hybridization concept is an important way to solve key scientific problems. Herein, due to its unique electronic structure, Sn is chosen as the proof of the conceptual element, and its effect on layered oxide cathode is summarized in three aspects: reversible phase transformation, abnormal structural regulation, and stable anionic redox. Firstly, the large size of Sn<sup>4+</sup> suppresses the sliding of the transition metal oxide (TMO<sub>2</sub>) layer and Na<sup>+</sup>/vacancy ordering as well as enhances the delocalization of electrons. Secondly, Sn with a similar ionic radius to other TM ions in the structure promotes the stacking of the O3 phase. What’s more, the distinctive electronic structure of Sn<sup>4+</sup> will enhance the operating voltage. Thirdly, a strong Sn-O bond stabilizes the lattice oxygen, promotes stable anion redox, and improves the energy density of the battery. Therefore, electronic structure modulation can provide technical direction for the development and industrialization of high-performance SIBs.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006530\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006530","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着储能需求的不断增长,用于钠离子电池(SIB)的层状氧化物阴极(NaxTMO2)已成为研究人员关注的焦点。然而,不可逆的多相转变和结构退化以及晶格氧损失阻碍了它们的商业化。基于轨道杂化概念的电子结构调控是解决关键科学问题的重要途径。在此,由于其独特的电子结构,选择 Sn 作为概念元素的证明,并将其对层状氧化物阴极的影响归纳为可逆相变、异常结构调控和稳定的阴离子氧化还原三个方面。首先,Sn4+ 的大尺寸抑制了过渡金属氧化物(TMO2)层的滑动和 Na+/空位有序化,并增强了电子的脱ocal。其次,与结构中其他 TM 离子具有相似离子半径的 Sn 会促进 O3 相的堆积。此外,Sn4+ 独特的电子结构会提高工作电压。第三,强 Sn-O 键能稳定晶格氧,促进稳定的阴离子氧化还原,提高电池的能量密度。因此,电子结构调制可为高性能 SIB 的开发和产业化提供技术方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Expediting layered oxide cathodes based on electronic structure engineering for sodium-ion batteries: Reversible phase transformation, abnormal structural regulation, and stable anionic redox

Expediting layered oxide cathodes based on electronic structure engineering for sodium-ion batteries: Reversible phase transformation, abnormal structural regulation, and stable anionic redox

With the growing demand for energy storage, layered oxide cathodes (NaxTMO2) for sodium-ion batteries (SIBs) have become the spotlight for researchers. However, irreversible multiphase transformation and structural degradation, as well as lattice oxygen loss, hindered their commercialization. Electronic structure modulation based on the orbital hybridization concept is an important way to solve key scientific problems. Herein, due to its unique electronic structure, Sn is chosen as the proof of the conceptual element, and its effect on layered oxide cathode is summarized in three aspects: reversible phase transformation, abnormal structural regulation, and stable anionic redox. Firstly, the large size of Sn4+ suppresses the sliding of the transition metal oxide (TMO2) layer and Na+/vacancy ordering as well as enhances the delocalization of electrons. Secondly, Sn with a similar ionic radius to other TM ions in the structure promotes the stacking of the O3 phase. What’s more, the distinctive electronic structure of Sn4+ will enhance the operating voltage. Thirdly, a strong Sn-O bond stabilizes the lattice oxygen, promotes stable anion redox, and improves the energy density of the battery. Therefore, electronic structure modulation can provide technical direction for the development and industrialization of high-performance SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信