{"title":"锂硫电池中的三硫自由基陷阱","authors":"Roza Bouchal , Clément Pechberty , Athmane Boulaoued , Niklas Lindahl , Patrik Johansson","doi":"10.1016/j.powera.2024.100153","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-sulfur (Li–S) batteries have emerged as a next-generation battery technology owing to their prospects of high capacity and energy density. They, however, suffer from rapid capacity decay due to the shuttling of reaction intermediate species: Li polysulfides (LiPSs). One of the more important and intriguing PSs is the tri-sulfur radical (<span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span>), observed mainly in high-donor number (DN) solvent-based electrolytes. Although this radical has been proposed to be crucial to full active material (AM) utilization, there is currently no direct evidence of the impact of <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> on cycling stability. To gain more insight into the role of the <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span>, we studied the use of radical traps in low and high DN solvent-based electrolytes by <em>operando</em> Raman spectroscopy. The traps were based on nitrone and iminium cation, and <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> was indeed successfully trapped in <em>ex situ</em> analysis. However, it was the ionic liquid-based trap, specifically pyridinium, that effectively suppressed <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> during battery operation. Overall, the PS formation was altered in the presence of the traps and we confirmed the impact of <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> formation on the Li–S battery redox reactions and show how the trapping correlates with Li–S battery performance. Therefore, stabilization of the <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> might be a path to improved Li–S batteries.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248524000192/pdfft?md5=d3bf5ed5febce78519798da3441e763a&pid=1-s2.0-S2666248524000192-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tri-sulfur radical trapping in lithium–sulfur batteries\",\"authors\":\"Roza Bouchal , Clément Pechberty , Athmane Boulaoued , Niklas Lindahl , Patrik Johansson\",\"doi\":\"10.1016/j.powera.2024.100153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-sulfur (Li–S) batteries have emerged as a next-generation battery technology owing to their prospects of high capacity and energy density. They, however, suffer from rapid capacity decay due to the shuttling of reaction intermediate species: Li polysulfides (LiPSs). One of the more important and intriguing PSs is the tri-sulfur radical (<span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span>), observed mainly in high-donor number (DN) solvent-based electrolytes. Although this radical has been proposed to be crucial to full active material (AM) utilization, there is currently no direct evidence of the impact of <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> on cycling stability. To gain more insight into the role of the <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span>, we studied the use of radical traps in low and high DN solvent-based electrolytes by <em>operando</em> Raman spectroscopy. The traps were based on nitrone and iminium cation, and <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> was indeed successfully trapped in <em>ex situ</em> analysis. However, it was the ionic liquid-based trap, specifically pyridinium, that effectively suppressed <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> during battery operation. Overall, the PS formation was altered in the presence of the traps and we confirmed the impact of <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> formation on the Li–S battery redox reactions and show how the trapping correlates with Li–S battery performance. Therefore, stabilization of the <span><math><mrow><msubsup><mi>S</mi><mn>3</mn><mrow><mo>•</mo><mo>−</mo></mrow></msubsup></mrow></math></span> might be a path to improved Li–S batteries.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000192/pdfft?md5=d3bf5ed5febce78519798da3441e763a&pid=1-s2.0-S2666248524000192-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248524000192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248524000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tri-sulfur radical trapping in lithium–sulfur batteries
Lithium-sulfur (Li–S) batteries have emerged as a next-generation battery technology owing to their prospects of high capacity and energy density. They, however, suffer from rapid capacity decay due to the shuttling of reaction intermediate species: Li polysulfides (LiPSs). One of the more important and intriguing PSs is the tri-sulfur radical (), observed mainly in high-donor number (DN) solvent-based electrolytes. Although this radical has been proposed to be crucial to full active material (AM) utilization, there is currently no direct evidence of the impact of on cycling stability. To gain more insight into the role of the , we studied the use of radical traps in low and high DN solvent-based electrolytes by operando Raman spectroscopy. The traps were based on nitrone and iminium cation, and was indeed successfully trapped in ex situ analysis. However, it was the ionic liquid-based trap, specifically pyridinium, that effectively suppressed during battery operation. Overall, the PS formation was altered in the presence of the traps and we confirmed the impact of formation on the Li–S battery redox reactions and show how the trapping correlates with Li–S battery performance. Therefore, stabilization of the might be a path to improved Li–S batteries.