{"title":"Pinus bungeana Zucc.(松科,针叶树属)的花粉囊:它们是否表明了假鳞茎的起源?","authors":"Veit Martin Dörken , Thomas Stützel","doi":"10.1016/j.flora.2024.152557","DOIUrl":null,"url":null,"abstract":"<div><p>Even today, the evolutionary origin of coniferous pollen-cones is still controversial and conflicting theories about the identity of their microsporangiophores exist. Previous studies strongly suggest that the simple pollen-cone structure of some Taxaceae s.l. is most likely derived from a compound structure and each microsporangiophore represents a lateral, however markedly reduced flower. To test if a similar evolutionary pathway remembering the pseudathium concept sensu Wettstein applies also for Pinaceae, normal shaped and abnormal pollen-cones of <em>Pinus bungeana</em> (Pinaceae) are investigated with SEM and paraffin microtome technique. <em>Pinus sylvestris</em>, which is the type species of the genus, is used as another example. The early development of bisporangiate microsporangiophores starts with two distinct primordia. They fuse in basal parts and form a common stalk. The distal parts remain free and each develops a stalk, a distinct phyllom-like scutellum and one abaxial microsporangium. In some bisporangiate microsporangiophores two monosporangiate microsporangiophores are inserted laterally at the common stalk, which forms a distinct terminal apex. Other microsporangiophores bear a subunit in form of a second, however, aborted microsporangiophore in a lateral position at the base of the common stalk. It is suggested that the bisporangiate microsporangiophore is not a staminate leaf in the sense of a microsporophyll, but a dorsiventral synangium consisting at least of two fused microsporangiophores. In this case each microsporangiophore corresponds to a markedly reduced cone (= flower) which however has lost its pherophyll (= subtending leaf). Similar as shown for <em>Torreya</em> the simple pollen-cone structure in Pinaceae is thus derived from a pseudanthial (= compound) origin.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0367253024001105/pdfft?md5=47e56f82d763ef410e6ea9a5f4915ab1&pid=1-s2.0-S0367253024001105-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Pollen-cones of Pinus bungeana Zucc. ex Endl. (Pinaceae, Coniferales): Do they indicate a pseudanthial origin?\",\"authors\":\"Veit Martin Dörken , Thomas Stützel\",\"doi\":\"10.1016/j.flora.2024.152557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Even today, the evolutionary origin of coniferous pollen-cones is still controversial and conflicting theories about the identity of their microsporangiophores exist. Previous studies strongly suggest that the simple pollen-cone structure of some Taxaceae s.l. is most likely derived from a compound structure and each microsporangiophore represents a lateral, however markedly reduced flower. To test if a similar evolutionary pathway remembering the pseudathium concept sensu Wettstein applies also for Pinaceae, normal shaped and abnormal pollen-cones of <em>Pinus bungeana</em> (Pinaceae) are investigated with SEM and paraffin microtome technique. <em>Pinus sylvestris</em>, which is the type species of the genus, is used as another example. The early development of bisporangiate microsporangiophores starts with two distinct primordia. They fuse in basal parts and form a common stalk. The distal parts remain free and each develops a stalk, a distinct phyllom-like scutellum and one abaxial microsporangium. In some bisporangiate microsporangiophores two monosporangiate microsporangiophores are inserted laterally at the common stalk, which forms a distinct terminal apex. Other microsporangiophores bear a subunit in form of a second, however, aborted microsporangiophore in a lateral position at the base of the common stalk. It is suggested that the bisporangiate microsporangiophore is not a staminate leaf in the sense of a microsporophyll, but a dorsiventral synangium consisting at least of two fused microsporangiophores. In this case each microsporangiophore corresponds to a markedly reduced cone (= flower) which however has lost its pherophyll (= subtending leaf). Similar as shown for <em>Torreya</em> the simple pollen-cone structure in Pinaceae is thus derived from a pseudanthial (= compound) origin.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0367253024001105/pdfft?md5=47e56f82d763ef410e6ea9a5f4915ab1&pid=1-s2.0-S0367253024001105-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0367253024001105\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0367253024001105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Pollen-cones of Pinus bungeana Zucc. ex Endl. (Pinaceae, Coniferales): Do they indicate a pseudanthial origin?
Even today, the evolutionary origin of coniferous pollen-cones is still controversial and conflicting theories about the identity of their microsporangiophores exist. Previous studies strongly suggest that the simple pollen-cone structure of some Taxaceae s.l. is most likely derived from a compound structure and each microsporangiophore represents a lateral, however markedly reduced flower. To test if a similar evolutionary pathway remembering the pseudathium concept sensu Wettstein applies also for Pinaceae, normal shaped and abnormal pollen-cones of Pinus bungeana (Pinaceae) are investigated with SEM and paraffin microtome technique. Pinus sylvestris, which is the type species of the genus, is used as another example. The early development of bisporangiate microsporangiophores starts with two distinct primordia. They fuse in basal parts and form a common stalk. The distal parts remain free and each develops a stalk, a distinct phyllom-like scutellum and one abaxial microsporangium. In some bisporangiate microsporangiophores two monosporangiate microsporangiophores are inserted laterally at the common stalk, which forms a distinct terminal apex. Other microsporangiophores bear a subunit in form of a second, however, aborted microsporangiophore in a lateral position at the base of the common stalk. It is suggested that the bisporangiate microsporangiophore is not a staminate leaf in the sense of a microsporophyll, but a dorsiventral synangium consisting at least of two fused microsporangiophores. In this case each microsporangiophore corresponds to a markedly reduced cone (= flower) which however has lost its pherophyll (= subtending leaf). Similar as shown for Torreya the simple pollen-cone structure in Pinaceae is thus derived from a pseudanthial (= compound) origin.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.