B.A.O. Lingyun , Zhengrui HUANG , Zehui LIN , Yue SUN , Hui CHEN , You LI , Zhang LI , Xiaochen YUAN , Lin XU , Tao TAN
{"title":"利用跨器官迁移学习在自动三维乳腺超声中自动检测乳腺病变","authors":"B.A.O. Lingyun , Zhengrui HUANG , Zehui LIN , Yue SUN , Hui CHEN , You LI , Zhang LI , Xiaochen YUAN , Lin XU , Tao TAN","doi":"10.1016/j.vrih.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications, particularly in visual recognition tasks such as image and video analyses. There is a growing interest in applying this technology to diverse applications in medical image analysis. Automated three-dimensional Breast Ultrasound is a vital tool for detecting breast cancer, and computer-assisted diagnosis software, developed based on deep learning, can effectively assist radiologists in diagnosis. However, the network model is prone to overfitting during training, owing to challenges such as insufficient training data. This study attempts to solve the problem caused by small datasets and improve model detection performance.</p></div><div><h3>Methods</h3><p>We propose a breast cancer detection framework based on deep learning (a transfer learning method based on cross-organ cancer detection) and a contrastive learning method based on breast imaging reporting and data systems (BI-RADS).</p></div><div><h3>Results</h3><p>When using cross organ transfer learning and BIRADS based contrastive learning, the average sensitivity of the model increased by a maximum of 16.05%.</p></div><div><h3>Conclusion</h3><p>Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced, and contrastive learning method based on BI-RADS can improve the detection performance of the model.</p></div>","PeriodicalId":33538,"journal":{"name":"Virtual Reality Intelligent Hardware","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209657962400007X/pdfft?md5=a1bdf0d74f499e2548f6f5735dd9b5bf&pid=1-s2.0-S209657962400007X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning\",\"authors\":\"B.A.O. Lingyun , Zhengrui HUANG , Zehui LIN , Yue SUN , Hui CHEN , You LI , Zhang LI , Xiaochen YUAN , Lin XU , Tao TAN\",\"doi\":\"10.1016/j.vrih.2024.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications, particularly in visual recognition tasks such as image and video analyses. There is a growing interest in applying this technology to diverse applications in medical image analysis. Automated three-dimensional Breast Ultrasound is a vital tool for detecting breast cancer, and computer-assisted diagnosis software, developed based on deep learning, can effectively assist radiologists in diagnosis. However, the network model is prone to overfitting during training, owing to challenges such as insufficient training data. This study attempts to solve the problem caused by small datasets and improve model detection performance.</p></div><div><h3>Methods</h3><p>We propose a breast cancer detection framework based on deep learning (a transfer learning method based on cross-organ cancer detection) and a contrastive learning method based on breast imaging reporting and data systems (BI-RADS).</p></div><div><h3>Results</h3><p>When using cross organ transfer learning and BIRADS based contrastive learning, the average sensitivity of the model increased by a maximum of 16.05%.</p></div><div><h3>Conclusion</h3><p>Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced, and contrastive learning method based on BI-RADS can improve the detection performance of the model.</p></div>\",\"PeriodicalId\":33538,\"journal\":{\"name\":\"Virtual Reality Intelligent Hardware\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209657962400007X/pdfft?md5=a1bdf0d74f499e2548f6f5735dd9b5bf&pid=1-s2.0-S209657962400007X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virtual Reality Intelligent Hardware\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209657962400007X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality Intelligent Hardware","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209657962400007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning
Background
Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications, particularly in visual recognition tasks such as image and video analyses. There is a growing interest in applying this technology to diverse applications in medical image analysis. Automated three-dimensional Breast Ultrasound is a vital tool for detecting breast cancer, and computer-assisted diagnosis software, developed based on deep learning, can effectively assist radiologists in diagnosis. However, the network model is prone to overfitting during training, owing to challenges such as insufficient training data. This study attempts to solve the problem caused by small datasets and improve model detection performance.
Methods
We propose a breast cancer detection framework based on deep learning (a transfer learning method based on cross-organ cancer detection) and a contrastive learning method based on breast imaging reporting and data systems (BI-RADS).
Results
When using cross organ transfer learning and BIRADS based contrastive learning, the average sensitivity of the model increased by a maximum of 16.05%.
Conclusion
Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced, and contrastive learning method based on BI-RADS can improve the detection performance of the model.