Linghan Zeng , Stefan Engels , Yanmin Cao , Xianyu Huang , Xu Chen
{"title":"洪泛平原湖泊中初级生产者和底栖无脊椎动物对水文变化的不同敏感性","authors":"Linghan Zeng , Stefan Engels , Yanmin Cao , Xianyu Huang , Xu Chen","doi":"10.1016/j.ancene.2024.100441","DOIUrl":null,"url":null,"abstract":"<div><p>Floodplain lake ecosystems are hydrologically dynamic and biologically important. Their ecosystem functioning is complex due to the concurrent influence of multiple anthropogenic stressors. Paleolimnological studies focused on a single biotic proxy might lead to biased results, as multiple trophic levels may show different responses to the same driver. In this study, multiple proxies including chlorophyll and carotenoid pigments (indicators of phytoplankton) and chironomids (indicators of invertebrates) were analyzed in a <sup>210</sup>Pb dated sediment core from Luhu Lake (Yangtze floodplain, China). Using these indicators, we investigated how different trophic levels respond to external driving forces (i.e., hydrological alteration represented by K/Al ratios and nutrient influxes indicated by TP) in floodplain lakes. Sedimentary pigments showed that algal production increased in Luhu Lake after the 2000s. The chironomid community shifted from a fauna dominated by <em>Microchironomus tener</em>-type to an assemblage characterized by macrophyte-dwelling taxa (e.g., <em>Tanytarsus</em>, <em>Paratanytarsus</em>, <em>Paratanytarsus penicillatus</em>-type) after the 1970s. Finally, nutrient-tolerant taxa (e.g., <em>Microchironomus tabarui</em>-type) increased in abundance after the 1990s. Redundancy analysis and hierarchical partitioning analysis showed that the increases in algal production were mainly correlated with anthropogenic nutrient influxes, followed by hydrological alteration. In contrast, the transition in the chironomid communities were mainly associated with hydrological alteration, followed by food sources. Our study revealed asynchronous responses of phototrophs and benthic invertebrates to hydrological alteration, highlighting the necessity of analyzing multiple trophic levels to obtain a sophisticate understanding of long-term ecosystem evolution in lotic floodplain lakes which are influenced by multiple stressors. These findings will provide valuable information for the sustainable development, as well as the conservation and restoration of floodplain lakes.</p></div>","PeriodicalId":56021,"journal":{"name":"Anthropocene","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divergent sensitivity of primary producers and benthic invertebrates to hydrological alteration in floodplain lakes\",\"authors\":\"Linghan Zeng , Stefan Engels , Yanmin Cao , Xianyu Huang , Xu Chen\",\"doi\":\"10.1016/j.ancene.2024.100441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Floodplain lake ecosystems are hydrologically dynamic and biologically important. Their ecosystem functioning is complex due to the concurrent influence of multiple anthropogenic stressors. Paleolimnological studies focused on a single biotic proxy might lead to biased results, as multiple trophic levels may show different responses to the same driver. In this study, multiple proxies including chlorophyll and carotenoid pigments (indicators of phytoplankton) and chironomids (indicators of invertebrates) were analyzed in a <sup>210</sup>Pb dated sediment core from Luhu Lake (Yangtze floodplain, China). Using these indicators, we investigated how different trophic levels respond to external driving forces (i.e., hydrological alteration represented by K/Al ratios and nutrient influxes indicated by TP) in floodplain lakes. Sedimentary pigments showed that algal production increased in Luhu Lake after the 2000s. The chironomid community shifted from a fauna dominated by <em>Microchironomus tener</em>-type to an assemblage characterized by macrophyte-dwelling taxa (e.g., <em>Tanytarsus</em>, <em>Paratanytarsus</em>, <em>Paratanytarsus penicillatus</em>-type) after the 1970s. Finally, nutrient-tolerant taxa (e.g., <em>Microchironomus tabarui</em>-type) increased in abundance after the 1990s. Redundancy analysis and hierarchical partitioning analysis showed that the increases in algal production were mainly correlated with anthropogenic nutrient influxes, followed by hydrological alteration. In contrast, the transition in the chironomid communities were mainly associated with hydrological alteration, followed by food sources. Our study revealed asynchronous responses of phototrophs and benthic invertebrates to hydrological alteration, highlighting the necessity of analyzing multiple trophic levels to obtain a sophisticate understanding of long-term ecosystem evolution in lotic floodplain lakes which are influenced by multiple stressors. These findings will provide valuable information for the sustainable development, as well as the conservation and restoration of floodplain lakes.</p></div>\",\"PeriodicalId\":56021,\"journal\":{\"name\":\"Anthropocene\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anthropocene\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213305424000183\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213305424000183","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Divergent sensitivity of primary producers and benthic invertebrates to hydrological alteration in floodplain lakes
Floodplain lake ecosystems are hydrologically dynamic and biologically important. Their ecosystem functioning is complex due to the concurrent influence of multiple anthropogenic stressors. Paleolimnological studies focused on a single biotic proxy might lead to biased results, as multiple trophic levels may show different responses to the same driver. In this study, multiple proxies including chlorophyll and carotenoid pigments (indicators of phytoplankton) and chironomids (indicators of invertebrates) were analyzed in a 210Pb dated sediment core from Luhu Lake (Yangtze floodplain, China). Using these indicators, we investigated how different trophic levels respond to external driving forces (i.e., hydrological alteration represented by K/Al ratios and nutrient influxes indicated by TP) in floodplain lakes. Sedimentary pigments showed that algal production increased in Luhu Lake after the 2000s. The chironomid community shifted from a fauna dominated by Microchironomus tener-type to an assemblage characterized by macrophyte-dwelling taxa (e.g., Tanytarsus, Paratanytarsus, Paratanytarsus penicillatus-type) after the 1970s. Finally, nutrient-tolerant taxa (e.g., Microchironomus tabarui-type) increased in abundance after the 1990s. Redundancy analysis and hierarchical partitioning analysis showed that the increases in algal production were mainly correlated with anthropogenic nutrient influxes, followed by hydrological alteration. In contrast, the transition in the chironomid communities were mainly associated with hydrological alteration, followed by food sources. Our study revealed asynchronous responses of phototrophs and benthic invertebrates to hydrological alteration, highlighting the necessity of analyzing multiple trophic levels to obtain a sophisticate understanding of long-term ecosystem evolution in lotic floodplain lakes which are influenced by multiple stressors. These findings will provide valuable information for the sustainable development, as well as the conservation and restoration of floodplain lakes.
AnthropoceneEarth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.30
自引率
0.00%
发文量
27
审稿时长
102 days
期刊介绍:
Anthropocene is an interdisciplinary journal that publishes peer-reviewed works addressing the nature, scale, and extent of interactions that people have with Earth processes and systems. The scope of the journal includes the significance of human activities in altering Earth’s landscapes, oceans, the atmosphere, cryosphere, and ecosystems over a range of time and space scales - from global phenomena over geologic eras to single isolated events - including the linkages, couplings, and feedbacks among physical, chemical, and biological components of Earth systems. The journal also addresses how such alterations can have profound effects on, and implications for, human society. As the scale and pace of human interactions with Earth systems have intensified in recent decades, understanding human-induced alterations in the past and present is critical to our ability to anticipate, mitigate, and adapt to changes in the future. The journal aims to provide a venue to focus research findings, discussions, and debates toward advancing predictive understanding of human interactions with Earth systems - one of the grand challenges of our time.