Yizhou Wang , Yuqi Hao , Jingxing Yu , Ying Wang , Chaopeng Li , Dewen Zheng , Huiping Zhang
{"title":"凤凰山晚白垩世降温与新生代脉冲式隆升:对中国中部秦岭造山带构造演化的启示","authors":"Yizhou Wang , Yuqi Hao , Jingxing Yu , Ying Wang , Chaopeng Li , Dewen Zheng , Huiping Zhang","doi":"10.1016/j.jsg.2024.105195","DOIUrl":null,"url":null,"abstract":"<div><p>Reactivation of the Qinling Orogen since the Late Jurassic has been controlled by the combined effects of the convergence between the South and North China blocks, the subduction of the Pacific Plate, and the northeastward expansion of the Tibetan Plateau. In this study, we present new apatite (U–Th)/He ages from a vertical transect in the Fenghuang Shan located in the North Daba Mountains, where rapid cooling at ∼95-90 Ma is identified. Inverse thermal history modeling results reveal another pulse of accelerated exhumation at ∼50 Ma. In addition, we analyzed longitudinal profiles of rivers draining the northern flank of the Fenghuang Shan and identified knickpoints that break channels into gentle upstream and steep downstream segments. We deduce that these knickpoints were initiated by an increase in the mountain-bounding fault throw, based on nearly constant chi values (an integral to the upstream drainage area distribution) and a reliance of knickpoints’ retreat distances on catchment areas. Assuming a linear slope exponent and erodibility of 10<sup>−6</sup> m<sup>0.1</sup>/a, we estimated knickpoint ages to be ∼5.7 ± 1.7 Ma. We interpret the Late Cretaceous cooling as a result of lithospheric extensional collapse following the Late Jurassic intra-continental compression between the North and South China blocks. The early Cenozoic exhumation might relate to the active normal faulting, as a far-field response to the west Pacific back-arc extension. The expansion of the NE Tibetan Plateau may have triggered the late Miocene uplift of the mountain range. The multiple episodes of tectonic events in the Fenghuang Shan might correspond to various geodynamic regimes on the tectonic evolution in the Qinling Orogen.</p></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":"185 ","pages":"Article 105195"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Late Cretaceous cooling and pulsed cenozoic uplift in the Fenghuang Shan: Insights into the tectonic evolution of the Qinling Orogen, central China\",\"authors\":\"Yizhou Wang , Yuqi Hao , Jingxing Yu , Ying Wang , Chaopeng Li , Dewen Zheng , Huiping Zhang\",\"doi\":\"10.1016/j.jsg.2024.105195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Reactivation of the Qinling Orogen since the Late Jurassic has been controlled by the combined effects of the convergence between the South and North China blocks, the subduction of the Pacific Plate, and the northeastward expansion of the Tibetan Plateau. In this study, we present new apatite (U–Th)/He ages from a vertical transect in the Fenghuang Shan located in the North Daba Mountains, where rapid cooling at ∼95-90 Ma is identified. Inverse thermal history modeling results reveal another pulse of accelerated exhumation at ∼50 Ma. In addition, we analyzed longitudinal profiles of rivers draining the northern flank of the Fenghuang Shan and identified knickpoints that break channels into gentle upstream and steep downstream segments. We deduce that these knickpoints were initiated by an increase in the mountain-bounding fault throw, based on nearly constant chi values (an integral to the upstream drainage area distribution) and a reliance of knickpoints’ retreat distances on catchment areas. Assuming a linear slope exponent and erodibility of 10<sup>−6</sup> m<sup>0.1</sup>/a, we estimated knickpoint ages to be ∼5.7 ± 1.7 Ma. We interpret the Late Cretaceous cooling as a result of lithospheric extensional collapse following the Late Jurassic intra-continental compression between the North and South China blocks. The early Cenozoic exhumation might relate to the active normal faulting, as a far-field response to the west Pacific back-arc extension. The expansion of the NE Tibetan Plateau may have triggered the late Miocene uplift of the mountain range. The multiple episodes of tectonic events in the Fenghuang Shan might correspond to various geodynamic regimes on the tectonic evolution in the Qinling Orogen.</p></div>\",\"PeriodicalId\":50035,\"journal\":{\"name\":\"Journal of Structural Geology\",\"volume\":\"185 \",\"pages\":\"Article 105195\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191814124001470\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124001470","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Late Cretaceous cooling and pulsed cenozoic uplift in the Fenghuang Shan: Insights into the tectonic evolution of the Qinling Orogen, central China
Reactivation of the Qinling Orogen since the Late Jurassic has been controlled by the combined effects of the convergence between the South and North China blocks, the subduction of the Pacific Plate, and the northeastward expansion of the Tibetan Plateau. In this study, we present new apatite (U–Th)/He ages from a vertical transect in the Fenghuang Shan located in the North Daba Mountains, where rapid cooling at ∼95-90 Ma is identified. Inverse thermal history modeling results reveal another pulse of accelerated exhumation at ∼50 Ma. In addition, we analyzed longitudinal profiles of rivers draining the northern flank of the Fenghuang Shan and identified knickpoints that break channels into gentle upstream and steep downstream segments. We deduce that these knickpoints were initiated by an increase in the mountain-bounding fault throw, based on nearly constant chi values (an integral to the upstream drainage area distribution) and a reliance of knickpoints’ retreat distances on catchment areas. Assuming a linear slope exponent and erodibility of 10−6 m0.1/a, we estimated knickpoint ages to be ∼5.7 ± 1.7 Ma. We interpret the Late Cretaceous cooling as a result of lithospheric extensional collapse following the Late Jurassic intra-continental compression between the North and South China blocks. The early Cenozoic exhumation might relate to the active normal faulting, as a far-field response to the west Pacific back-arc extension. The expansion of the NE Tibetan Plateau may have triggered the late Miocene uplift of the mountain range. The multiple episodes of tectonic events in the Fenghuang Shan might correspond to various geodynamic regimes on the tectonic evolution in the Qinling Orogen.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.