{"title":"通过扩散蠕变对布里奇曼岩-辉绿岩混合物进行应变定位:自洽方法的应用","authors":"H.E. Cho , Shun-ichiro Karato","doi":"10.1016/j.pepi.2024.107224","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we investigate the finite deformation of a polycrystalline mixture of bridgmanite (Br) and ferropericlase (Fp) by diffusion creep at the lower mantle-like temperature and pressure by using the self-consistent approach. We explore the influence of volume fraction of Fp, viscosity contrast, and strain dependence (effect of shape change) under both axial (coaxial deformation) and simple shear (non-coaxial deformation). Our present study shows: i) the strength (viscosity) contrast between Fp and Br increases with strain since the viscosity of Fp significantly decreases as Fp grain elongates, and (ii) deformation starts from nearly homogeneous strain to finally nearly homogeneous stress under simple shear whereas deformation behavior remains nearly homogeneous strain under axial deformation. A more substantial creep rate partitioning occurs in simple shear than in axial deformation. These results imply that strain localization <em>via</em> diffusion creep might occur in the lower mantle, particularly in regions where the simple shear is dominated (<em>i.e.</em>, in the boundary layers (<em>e.g.</em>, the D″ layer)).</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"353 ","pages":"Article 107224"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain localization by diffusion creep of Bridgmanite-Ferropericlase mixture: Application of self-consistent method\",\"authors\":\"H.E. Cho , Shun-ichiro Karato\",\"doi\":\"10.1016/j.pepi.2024.107224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we investigate the finite deformation of a polycrystalline mixture of bridgmanite (Br) and ferropericlase (Fp) by diffusion creep at the lower mantle-like temperature and pressure by using the self-consistent approach. We explore the influence of volume fraction of Fp, viscosity contrast, and strain dependence (effect of shape change) under both axial (coaxial deformation) and simple shear (non-coaxial deformation). Our present study shows: i) the strength (viscosity) contrast between Fp and Br increases with strain since the viscosity of Fp significantly decreases as Fp grain elongates, and (ii) deformation starts from nearly homogeneous strain to finally nearly homogeneous stress under simple shear whereas deformation behavior remains nearly homogeneous strain under axial deformation. A more substantial creep rate partitioning occurs in simple shear than in axial deformation. These results imply that strain localization <em>via</em> diffusion creep might occur in the lower mantle, particularly in regions where the simple shear is dominated (<em>i.e.</em>, in the boundary layers (<em>e.g.</em>, the D″ layer)).</p></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"353 \",\"pages\":\"Article 107224\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920124000827\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920124000827","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Strain localization by diffusion creep of Bridgmanite-Ferropericlase mixture: Application of self-consistent method
In this study, we investigate the finite deformation of a polycrystalline mixture of bridgmanite (Br) and ferropericlase (Fp) by diffusion creep at the lower mantle-like temperature and pressure by using the self-consistent approach. We explore the influence of volume fraction of Fp, viscosity contrast, and strain dependence (effect of shape change) under both axial (coaxial deformation) and simple shear (non-coaxial deformation). Our present study shows: i) the strength (viscosity) contrast between Fp and Br increases with strain since the viscosity of Fp significantly decreases as Fp grain elongates, and (ii) deformation starts from nearly homogeneous strain to finally nearly homogeneous stress under simple shear whereas deformation behavior remains nearly homogeneous strain under axial deformation. A more substantial creep rate partitioning occurs in simple shear than in axial deformation. These results imply that strain localization via diffusion creep might occur in the lower mantle, particularly in regions where the simple shear is dominated (i.e., in the boundary layers (e.g., the D″ layer)).
期刊介绍:
Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors.
Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.