{"title":"根据空间无线电干涉仪的(u,v)覆盖率估算轨道参数","authors":"I.I. Bulygin , M.A. Shchurov , A.G. Rudnitskiy","doi":"10.1016/j.ascom.2024.100855","DOIUrl":null,"url":null,"abstract":"<div><p>Searching for a suitable very long baseline (VLBI) interferometer geometry is a key task in planning observations, especially imaging sessions. VLBI image quality is characterized by <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-coverage. With one or more radio telescopes located in space, such a task becomes more complex. This paper presents a method of recovering the optimal orbital parameters for space radio telescopes having a given desired <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-coverage. In turn, this task can be called the inverse of the task of searching for the optimal geometry and orbital configurations of space-ground and pure space VLBI interferometers.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100855"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of orbital parameters from (u,v)-coverage for a space radio interferometer\",\"authors\":\"I.I. Bulygin , M.A. Shchurov , A.G. Rudnitskiy\",\"doi\":\"10.1016/j.ascom.2024.100855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Searching for a suitable very long baseline (VLBI) interferometer geometry is a key task in planning observations, especially imaging sessions. VLBI image quality is characterized by <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-coverage. With one or more radio telescopes located in space, such a task becomes more complex. This paper presents a method of recovering the optimal orbital parameters for space radio telescopes having a given desired <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow></math></span>-coverage. In turn, this task can be called the inverse of the task of searching for the optimal geometry and orbital configurations of space-ground and pure space VLBI interferometers.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"48 \",\"pages\":\"Article 100855\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000702\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000702","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Estimation of orbital parameters from (u,v)-coverage for a space radio interferometer
Searching for a suitable very long baseline (VLBI) interferometer geometry is a key task in planning observations, especially imaging sessions. VLBI image quality is characterized by -coverage. With one or more radio telescopes located in space, such a task becomes more complex. This paper presents a method of recovering the optimal orbital parameters for space radio telescopes having a given desired -coverage. In turn, this task can be called the inverse of the task of searching for the optimal geometry and orbital configurations of space-ground and pure space VLBI interferometers.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.