关于奈斯-赫勒塞斯函数的进一步研究

IF 1.2 3区 数学 Q1 MATHEMATICS
Cheng Lyu, Xiaoqiang Wang, Dabin Zheng
{"title":"关于奈斯-赫勒塞斯函数的进一步研究","authors":"Cheng Lyu,&nbsp;Xiaoqiang Wang,&nbsp;Dabin Zheng","doi":"10.1016/j.ffa.2024.102453","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> be a finite field with <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> elements. Ness and Helleseth in <span>[29]</span> first studied a class of functions over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> with the form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>u</mi><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, which is called the Ness-Helleseth function. The <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> has been proved to be an almost perfect nonlinear (APN) function by Ness and Helleseth for <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span> in <span>[29]</span> and by Zeng et al. for any odd prime <em>p</em> in <span>[43]</span> under the condition <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mi>u</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. In this paper, we continue to study the Ness-Helleseth functions under the condition that <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>≠</mo><mi>η</mi><mo>(</mo><mi>u</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Firstly, we prove that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a permutation polynomial with differential uniformity not more than 4 if <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo></math></span>. Moreover, for some more special <em>u</em>, <em>f</em> is an involution with differential uniformity at most 3. Secondly, we show that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a locally-APN function for <span><math><mi>u</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>. In addition, the differential spectrum and boomerang spectrum of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> are obtained via judging the number of solutions of some special equations. We obtain the first non-PN function that its boomerang uniformity can attain 0 or 1.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"98 ","pages":"Article 102453"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A further study on the Ness-Helleseth function\",\"authors\":\"Cheng Lyu,&nbsp;Xiaoqiang Wang,&nbsp;Dabin Zheng\",\"doi\":\"10.1016/j.ffa.2024.102453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> be a finite field with <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> elements. Ness and Helleseth in <span>[29]</span> first studied a class of functions over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> with the form <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>u</mi><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>−</mo><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>, which is called the Ness-Helleseth function. The <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> has been proved to be an almost perfect nonlinear (APN) function by Ness and Helleseth for <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span> in <span>[29]</span> and by Zeng et al. for any odd prime <em>p</em> in <span>[43]</span> under the condition <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mi>u</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. In this paper, we continue to study the Ness-Helleseth functions under the condition that <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≡</mo><mn>3</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span> and <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>≠</mo><mi>η</mi><mo>(</mo><mi>u</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Firstly, we prove that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a permutation polynomial with differential uniformity not more than 4 if <span><math><mi>η</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>η</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo></math></span>. Moreover, for some more special <em>u</em>, <em>f</em> is an involution with differential uniformity at most 3. Secondly, we show that <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is a locally-APN function for <span><math><mi>u</mi><mo>=</mo><mo>±</mo><mn>1</mn></math></span>. In addition, the differential spectrum and boomerang spectrum of <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> are obtained via judging the number of solutions of some special equations. We obtain the first non-PN function that its boomerang uniformity can attain 0 or 1.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"98 \",\"pages\":\"Article 102453\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000923\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000923","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Fpn 是有 pn 个元素的有限域。Ness 和 Helleseth 在文献[29]中首次研究了 Fpn 上一类形式为 f(x)=uxpn-32+xpn-2,u∈Fpn⁎ 的函数,称为 Ness-Helleseth 函数。在 pn≡3(mod4) 和 η(1+u)=η(u-1) 条件下,内斯和海勒塞斯在[29]中证明了 f(x) 是 p=3 的几乎完全非线性(APN)函数,曾等人在[43]中证明了 f(x) 是任意奇素数 p 的几乎完全非线性(APN)函数。本文继续研究 pn≡3(mod4)且 η(1+u)≠η(u-1) 条件下的奈斯-赫勒塞特函数。首先,我们证明,如果 η(1+u)=η(1-u), f(x) 是微分均匀性不大于 4 的置换多项式。其次,我们证明了在 u=±1 时,f(x) 是局部 APN 函数。此外,通过判断一些特殊方程的解的个数,我们得到了 f(x) 的微分谱和回旋谱。我们得到了第一个其回旋均匀性可以达到 0 或 1 的非 APN 函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A further study on the Ness-Helleseth function

Let Fpn be a finite field with pn elements. Ness and Helleseth in [29] first studied a class of functions over Fpn with the form f(x)=uxpn32+xpn2,uFpn, which is called the Ness-Helleseth function. The f(x) has been proved to be an almost perfect nonlinear (APN) function by Ness and Helleseth for p=3 in [29] and by Zeng et al. for any odd prime p in [43] under the condition pn3(mod4) and η(1+u)=η(u1). In this paper, we continue to study the Ness-Helleseth functions under the condition that pn3(mod4) and η(1+u)η(u1). Firstly, we prove that f(x) is a permutation polynomial with differential uniformity not more than 4 if η(1+u)=η(1u). Moreover, for some more special u, f is an involution with differential uniformity at most 3. Secondly, we show that f(x) is a locally-APN function for u=±1. In addition, the differential spectrum and boomerang spectrum of f(x) are obtained via judging the number of solutions of some special equations. We obtain the first non-PN function that its boomerang uniformity can attain 0 or 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信