Shuang Li , Ming Huang , Mingjuan Cui , Guixiao Jin , Kai Xu
{"title":"通过添加磁性纳米氧化铁粒子(纳米 Fe3O4)改善生物处理回填材料的热机械性能","authors":"Shuang Li , Ming Huang , Mingjuan Cui , Guixiao Jin , Kai Xu","doi":"10.1016/j.gete.2024.100571","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal conductivity of backfill materials directly affects the heat transfer efficiency between energy geo-structures and the surrounding stratum. Microbially induced carbonate precipitation (MICP) possesses great potential for improving the thermal conductivity of backfill materials. Magnetic iron oxide nanoparticles (i.e., nano-Fe<sub>3</sub>O<sub>4</sub>) have been proven to enhance bacterial biochemical activity by altering the permeability of bacterial biofilms, thus potentially improving the MICP process. It was supposed to enhance the thermal conductivity of backfill materials, allowing for applying energy geo-structures in arid environments. In this study, MICP in a solution environment was conducted to analyze bacterial urease activity and morphology of precipitation at varying nano-Fe<sub>3</sub>O<sub>4</sub> contents. Additionally, sand columns treated with MICP and different nano-Fe<sub>3</sub>O<sub>4</sub> contents were performed to obtain the thermal conductivity and unconfined compressive strength (UCS) through the transient plane source (TPS) method and uniaxial compression (UC) experiment. The mineral type, precipitation morphology, and microstructure were identified using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of the effect of nano-Fe3O4 on bacterial urease activity and thermal-mechanical behaviors was also discussed. The results indicated that the nano-Fe<sub>3</sub>O<sub>4</sub> could enhance bacterial urease activity and promote vaterite precipitation in the solution environment. Conversely, when applied to MICP-treated sand, nano-Fe<sub>3</sub>O<sub>4</sub> could facilitate calcite formation. Increasing the nano-Fe<sub>3</sub>O<sub>4</sub> content showed a positive correlation with increased thermal conductivity and UCS. Specifically, the optimal values of thermal conductivity and UCS increased by 2.42 times and 2.39 times, respectively, compared to MICP-treated specimens without nano-Fe<sub>3</sub>O<sub>4</sub>. Microstructure analysis revealed that calcite precipitation at the particle contact served a dual function: cementing particles, thereby improving the mechanical strength and simultaneously acting as a \"thermal bridge\" to enhance the thermal conductivity. Furthermore, this study provides a new perspective on utilizing magnetized bacteria to reinforce specific locations within rocks and soils in the presence of an external magnetic field.</p></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"39 ","pages":"Article 100571"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the thermal-mechanical performance of bio-treated backfill materials by addition of magnetic iron oxide nanoparticles (nano-Fe3O4)\",\"authors\":\"Shuang Li , Ming Huang , Mingjuan Cui , Guixiao Jin , Kai Xu\",\"doi\":\"10.1016/j.gete.2024.100571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermal conductivity of backfill materials directly affects the heat transfer efficiency between energy geo-structures and the surrounding stratum. Microbially induced carbonate precipitation (MICP) possesses great potential for improving the thermal conductivity of backfill materials. Magnetic iron oxide nanoparticles (i.e., nano-Fe<sub>3</sub>O<sub>4</sub>) have been proven to enhance bacterial biochemical activity by altering the permeability of bacterial biofilms, thus potentially improving the MICP process. It was supposed to enhance the thermal conductivity of backfill materials, allowing for applying energy geo-structures in arid environments. In this study, MICP in a solution environment was conducted to analyze bacterial urease activity and morphology of precipitation at varying nano-Fe<sub>3</sub>O<sub>4</sub> contents. Additionally, sand columns treated with MICP and different nano-Fe<sub>3</sub>O<sub>4</sub> contents were performed to obtain the thermal conductivity and unconfined compressive strength (UCS) through the transient plane source (TPS) method and uniaxial compression (UC) experiment. The mineral type, precipitation morphology, and microstructure were identified using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of the effect of nano-Fe3O4 on bacterial urease activity and thermal-mechanical behaviors was also discussed. The results indicated that the nano-Fe<sub>3</sub>O<sub>4</sub> could enhance bacterial urease activity and promote vaterite precipitation in the solution environment. Conversely, when applied to MICP-treated sand, nano-Fe<sub>3</sub>O<sub>4</sub> could facilitate calcite formation. Increasing the nano-Fe<sub>3</sub>O<sub>4</sub> content showed a positive correlation with increased thermal conductivity and UCS. Specifically, the optimal values of thermal conductivity and UCS increased by 2.42 times and 2.39 times, respectively, compared to MICP-treated specimens without nano-Fe<sub>3</sub>O<sub>4</sub>. Microstructure analysis revealed that calcite precipitation at the particle contact served a dual function: cementing particles, thereby improving the mechanical strength and simultaneously acting as a \\\"thermal bridge\\\" to enhance the thermal conductivity. Furthermore, this study provides a new perspective on utilizing magnetized bacteria to reinforce specific locations within rocks and soils in the presence of an external magnetic field.</p></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"39 \",\"pages\":\"Article 100571\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380824000388\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380824000388","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Improving the thermal-mechanical performance of bio-treated backfill materials by addition of magnetic iron oxide nanoparticles (nano-Fe3O4)
The thermal conductivity of backfill materials directly affects the heat transfer efficiency between energy geo-structures and the surrounding stratum. Microbially induced carbonate precipitation (MICP) possesses great potential for improving the thermal conductivity of backfill materials. Magnetic iron oxide nanoparticles (i.e., nano-Fe3O4) have been proven to enhance bacterial biochemical activity by altering the permeability of bacterial biofilms, thus potentially improving the MICP process. It was supposed to enhance the thermal conductivity of backfill materials, allowing for applying energy geo-structures in arid environments. In this study, MICP in a solution environment was conducted to analyze bacterial urease activity and morphology of precipitation at varying nano-Fe3O4 contents. Additionally, sand columns treated with MICP and different nano-Fe3O4 contents were performed to obtain the thermal conductivity and unconfined compressive strength (UCS) through the transient plane source (TPS) method and uniaxial compression (UC) experiment. The mineral type, precipitation morphology, and microstructure were identified using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of the effect of nano-Fe3O4 on bacterial urease activity and thermal-mechanical behaviors was also discussed. The results indicated that the nano-Fe3O4 could enhance bacterial urease activity and promote vaterite precipitation in the solution environment. Conversely, when applied to MICP-treated sand, nano-Fe3O4 could facilitate calcite formation. Increasing the nano-Fe3O4 content showed a positive correlation with increased thermal conductivity and UCS. Specifically, the optimal values of thermal conductivity and UCS increased by 2.42 times and 2.39 times, respectively, compared to MICP-treated specimens without nano-Fe3O4. Microstructure analysis revealed that calcite precipitation at the particle contact served a dual function: cementing particles, thereby improving the mechanical strength and simultaneously acting as a "thermal bridge" to enhance the thermal conductivity. Furthermore, this study provides a new perspective on utilizing magnetized bacteria to reinforce specific locations within rocks and soils in the presence of an external magnetic field.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.