完全单调性下多值工具的工具-剩余估计器

Pub Date : 2024-06-19 DOI:10.1016/j.spl.2024.110187
Bora Kim , Myoung-jae Lee
{"title":"完全单调性下多值工具的工具-剩余估计器","authors":"Bora Kim ,&nbsp;Myoung-jae Lee","doi":"10.1016/j.spl.2024.110187","DOIUrl":null,"url":null,"abstract":"<div><p>In determining the effects of a binary treatment <span><math><mi>D</mi></math></span> on an outcome <span><math><mi>Y</mi></math></span>, a multi-valued instrumental variable (IV) <span><math><mrow><mi>Z</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>J</mi></mrow></math></span> often appears. <span>Imbens and Angrist (1994, Econometrica)</span> showed that the IV estimator (IVE) of <span><math><mi>Y</mi></math></span> on <span><math><mi>D</mi></math></span> using <span><math><mi>Z</mi></math></span> as an IV is consistent for a non-negatively weighted average of heterogeneous “complier” effects. However, Imbens and Angrist did not include covariates <span><math><mi>X</mi></math></span>. This paper generalizes their finding by explicitly allowing <span><math><mi>X</mi></math></span> to appear in the linear model for the IVE, and shows that the extra condition <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> is necessary for generalization, where <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>≡</mo><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><msup><mrow><mrow><mo>{</mo><mi>E</mi><mrow><mo>(</mo><mi>X</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi></mrow></math></span> is the linear projection. This paper therefore proposes an alternative IVE using <span><math><mrow><mi>Z</mi><mo>−</mo><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> as an IV, which is consistent for the same estimand <em>without</em> the restrictive extra condition. A simulation study demonstrates that the extra condition <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> is necessary for the usual IVE, but not for the alternative IVE proposed in this paper.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instrument-residual estimator for multi-valued instruments under full monotonicity\",\"authors\":\"Bora Kim ,&nbsp;Myoung-jae Lee\",\"doi\":\"10.1016/j.spl.2024.110187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In determining the effects of a binary treatment <span><math><mi>D</mi></math></span> on an outcome <span><math><mi>Y</mi></math></span>, a multi-valued instrumental variable (IV) <span><math><mrow><mi>Z</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>J</mi></mrow></math></span> often appears. <span>Imbens and Angrist (1994, Econometrica)</span> showed that the IV estimator (IVE) of <span><math><mi>Y</mi></math></span> on <span><math><mi>D</mi></math></span> using <span><math><mi>Z</mi></math></span> as an IV is consistent for a non-negatively weighted average of heterogeneous “complier” effects. However, Imbens and Angrist did not include covariates <span><math><mi>X</mi></math></span>. This paper generalizes their finding by explicitly allowing <span><math><mi>X</mi></math></span> to appear in the linear model for the IVE, and shows that the extra condition <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> is necessary for generalization, where <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>≡</mo><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><msup><mrow><mrow><mo>{</mo><mi>E</mi><mrow><mo>(</mo><mi>X</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi></mrow></math></span> is the linear projection. This paper therefore proposes an alternative IVE using <span><math><mrow><mi>Z</mi><mo>−</mo><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> as an IV, which is consistent for the same estimand <em>without</em> the restrictive extra condition. A simulation study demonstrates that the extra condition <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> is necessary for the usual IVE, but not for the alternative IVE proposed in this paper.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在确定二元处理 D 对结果 Y 的影响时,经常会出现多值工具变量(IV)Z=0,1,...,J。Imbens 和 Angrist(1994 年,《计量经济学》)的研究表明,以 Z 为 IV 的 Y 对 D 的 IV 估计(IVE)与异质 "辅助者 "效应的非负加权平均值是一致的。本文通过明确允许 X 出现在 IVE 的线性模型中,对他们的发现进行了概括,并表明 E(Z|X)=L(Z|X) 是概括所必需的额外条件,其中 L(Z|X)≡E(ZX′){E(XX′)}-1X 是线性投影。因此,本文提出了另一种以 Z-E(Z|X)为 IV 的 IVE,这种 IVE 对于相同的估计值是一致的,而没有限制性的额外条件。模拟研究表明,E(Z|X)=L(Z|X)这一额外条件对于通常的 IVE 是必要的,但对于本文提出的替代 IVE 却不是。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Instrument-residual estimator for multi-valued instruments under full monotonicity

In determining the effects of a binary treatment D on an outcome Y, a multi-valued instrumental variable (IV) Z=0,1,,J often appears. Imbens and Angrist (1994, Econometrica) showed that the IV estimator (IVE) of Y on D using Z as an IV is consistent for a non-negatively weighted average of heterogeneous “complier” effects. However, Imbens and Angrist did not include covariates X. This paper generalizes their finding by explicitly allowing X to appear in the linear model for the IVE, and shows that the extra condition E(Z|X)=L(Z|X) is necessary for generalization, where L(Z|X)E(ZX){E(XX)}1X is the linear projection. This paper therefore proposes an alternative IVE using ZE(Z|X) as an IV, which is consistent for the same estimand without the restrictive extra condition. A simulation study demonstrates that the extra condition E(Z|X)=L(Z|X) is necessary for the usual IVE, but not for the alternative IVE proposed in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信