{"title":"完全单调性下多值工具的工具-剩余估计器","authors":"Bora Kim , Myoung-jae Lee","doi":"10.1016/j.spl.2024.110187","DOIUrl":null,"url":null,"abstract":"<div><p>In determining the effects of a binary treatment <span><math><mi>D</mi></math></span> on an outcome <span><math><mi>Y</mi></math></span>, a multi-valued instrumental variable (IV) <span><math><mrow><mi>Z</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>J</mi></mrow></math></span> often appears. <span>Imbens and Angrist (1994, Econometrica)</span> showed that the IV estimator (IVE) of <span><math><mi>Y</mi></math></span> on <span><math><mi>D</mi></math></span> using <span><math><mi>Z</mi></math></span> as an IV is consistent for a non-negatively weighted average of heterogeneous “complier” effects. However, Imbens and Angrist did not include covariates <span><math><mi>X</mi></math></span>. This paper generalizes their finding by explicitly allowing <span><math><mi>X</mi></math></span> to appear in the linear model for the IVE, and shows that the extra condition <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> is necessary for generalization, where <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>≡</mo><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><msup><mrow><mrow><mo>{</mo><mi>E</mi><mrow><mo>(</mo><mi>X</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi></mrow></math></span> is the linear projection. This paper therefore proposes an alternative IVE using <span><math><mrow><mi>Z</mi><mo>−</mo><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> as an IV, which is consistent for the same estimand <em>without</em> the restrictive extra condition. A simulation study demonstrates that the extra condition <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> is necessary for the usual IVE, but not for the alternative IVE proposed in this paper.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instrument-residual estimator for multi-valued instruments under full monotonicity\",\"authors\":\"Bora Kim , Myoung-jae Lee\",\"doi\":\"10.1016/j.spl.2024.110187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In determining the effects of a binary treatment <span><math><mi>D</mi></math></span> on an outcome <span><math><mi>Y</mi></math></span>, a multi-valued instrumental variable (IV) <span><math><mrow><mi>Z</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>J</mi></mrow></math></span> often appears. <span>Imbens and Angrist (1994, Econometrica)</span> showed that the IV estimator (IVE) of <span><math><mi>Y</mi></math></span> on <span><math><mi>D</mi></math></span> using <span><math><mi>Z</mi></math></span> as an IV is consistent for a non-negatively weighted average of heterogeneous “complier” effects. However, Imbens and Angrist did not include covariates <span><math><mi>X</mi></math></span>. This paper generalizes their finding by explicitly allowing <span><math><mi>X</mi></math></span> to appear in the linear model for the IVE, and shows that the extra condition <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> is necessary for generalization, where <span><math><mrow><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>≡</mo><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><msup><mrow><mrow><mo>{</mo><mi>E</mi><mrow><mo>(</mo><mi>X</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mo>}</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>X</mi></mrow></math></span> is the linear projection. This paper therefore proposes an alternative IVE using <span><math><mrow><mi>Z</mi><mo>−</mo><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> as an IV, which is consistent for the same estimand <em>without</em> the restrictive extra condition. A simulation study demonstrates that the extra condition <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow><mo>=</mo><mi>L</mi><mrow><mo>(</mo><mi>Z</mi><mo>|</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> is necessary for the usual IVE, but not for the alternative IVE proposed in this paper.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224001561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在确定二元处理 D 对结果 Y 的影响时,经常会出现多值工具变量(IV)Z=0,1,...,J。Imbens 和 Angrist(1994 年,《计量经济学》)的研究表明,以 Z 为 IV 的 Y 对 D 的 IV 估计(IVE)与异质 "辅助者 "效应的非负加权平均值是一致的。本文通过明确允许 X 出现在 IVE 的线性模型中,对他们的发现进行了概括,并表明 E(Z|X)=L(Z|X) 是概括所必需的额外条件,其中 L(Z|X)≡E(ZX′){E(XX′)}-1X 是线性投影。因此,本文提出了另一种以 Z-E(Z|X)为 IV 的 IVE,这种 IVE 对于相同的估计值是一致的,而没有限制性的额外条件。模拟研究表明,E(Z|X)=L(Z|X)这一额外条件对于通常的 IVE 是必要的,但对于本文提出的替代 IVE 却不是。
Instrument-residual estimator for multi-valued instruments under full monotonicity
In determining the effects of a binary treatment on an outcome , a multi-valued instrumental variable (IV) often appears. Imbens and Angrist (1994, Econometrica) showed that the IV estimator (IVE) of on using as an IV is consistent for a non-negatively weighted average of heterogeneous “complier” effects. However, Imbens and Angrist did not include covariates . This paper generalizes their finding by explicitly allowing to appear in the linear model for the IVE, and shows that the extra condition is necessary for generalization, where is the linear projection. This paper therefore proposes an alternative IVE using as an IV, which is consistent for the same estimand without the restrictive extra condition. A simulation study demonstrates that the extra condition is necessary for the usual IVE, but not for the alternative IVE proposed in this paper.