有限域上狄克森多项式的残差和

IF 0.6 3区 数学 Q3 MATHEMATICS
Thomas Brazelton , Joshua Harrington , Matthew Litman , Tony W.H. Wong
{"title":"有限域上狄克森多项式的残差和","authors":"Thomas Brazelton ,&nbsp;Joshua Harrington ,&nbsp;Matthew Litman ,&nbsp;Tony W.H. Wong","doi":"10.1016/j.jnt.2024.04.016","DOIUrl":null,"url":null,"abstract":"<div><p>Given a polynomial with integral coefficients, one can inquire about the possible residues it can take in its image modulo a prime <em>p</em>. The sum over the distinct residues can sometimes be computed independent of the prime <em>p</em>; for example, Gauss showed that the sum over quadratic residues vanishes modulo a prime. In this paper we provide a closed form for the sum over distinct residues in the image of Dickson polynomials of arbitrary degree over finite fields of odd characteristic, and prove a complete characterization of the size of the value set. Our result provides the first non-trivial classification of such a sum for a family of polynomials of unbounded degree.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"264 ","pages":"Pages 1-26"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001240/pdfft?md5=f1a2e3015f4f9442190153e6f02f006d&pid=1-s2.0-S0022314X24001240-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Residue sums of Dickson polynomials over finite fields\",\"authors\":\"Thomas Brazelton ,&nbsp;Joshua Harrington ,&nbsp;Matthew Litman ,&nbsp;Tony W.H. Wong\",\"doi\":\"10.1016/j.jnt.2024.04.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a polynomial with integral coefficients, one can inquire about the possible residues it can take in its image modulo a prime <em>p</em>. The sum over the distinct residues can sometimes be computed independent of the prime <em>p</em>; for example, Gauss showed that the sum over quadratic residues vanishes modulo a prime. In this paper we provide a closed form for the sum over distinct residues in the image of Dickson polynomials of arbitrary degree over finite fields of odd characteristic, and prove a complete characterization of the size of the value set. Our result provides the first non-trivial classification of such a sum for a family of polynomials of unbounded degree.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"264 \",\"pages\":\"Pages 1-26\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001240/pdfft?md5=f1a2e3015f4f9442190153e6f02f006d&pid=1-s2.0-S0022314X24001240-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001240\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个具有积分系数的多项式,我们可以探究它在素数 p 的调制下在其图像中可能的残差。在本文中,我们提供了奇特征有限域上任意阶狄克森多项式映像中不同残差之和的封闭形式,并证明了值集大小的完整特征。我们的结果为无界度多项式族的此类和提供了第一个非难分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residue sums of Dickson polynomials over finite fields

Given a polynomial with integral coefficients, one can inquire about the possible residues it can take in its image modulo a prime p. The sum over the distinct residues can sometimes be computed independent of the prime p; for example, Gauss showed that the sum over quadratic residues vanishes modulo a prime. In this paper we provide a closed form for the sum over distinct residues in the image of Dickson polynomials of arbitrary degree over finite fields of odd characteristic, and prove a complete characterization of the size of the value set. Our result provides the first non-trivial classification of such a sum for a family of polynomials of unbounded degree.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信