{"title":"普通分区和 t 规则分区中的钩长偏差","authors":"Gurinder Singh, Rupam Barman","doi":"10.1016/j.jnt.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study hook lengths of ordinary partitions and <em>t</em>-regular partitions. We establish hook length biases for the ordinary partitions and motivated by them we find a few interesting hook length biases in 2-regular partitions. For a positive integer <em>k</em>, let <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of hooks of length <em>k</em> in all the partitions of <em>n</em>. We prove that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≠</mo><mi>k</mi><mo>+</mo><mn>1</mn></math></span>; and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. For integers <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of hooks of length <em>k</em> in all the <em>t</em>-regular partitions of <em>n</em>. We find generating functions of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for certain values of <em>t</em> and <em>k</em>. Exploring hook length biases for <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, we observe that in certain cases biases are opposite to the biases for ordinary partitions. We prove that <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>></mo><mn>4</mn></math></span>, whereas <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>. We also propose some conjectures on biases among <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hook length biases in ordinary and t-regular partitions\",\"authors\":\"Gurinder Singh, Rupam Barman\",\"doi\":\"10.1016/j.jnt.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we study hook lengths of ordinary partitions and <em>t</em>-regular partitions. We establish hook length biases for the ordinary partitions and motivated by them we find a few interesting hook length biases in 2-regular partitions. For a positive integer <em>k</em>, let <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of hooks of length <em>k</em> in all the partitions of <em>n</em>. We prove that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span> and <span><math><mi>n</mi><mo>≠</mo><mi>k</mi><mo>+</mo><mn>1</mn></math></span>; and <span><math><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msub><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></msub><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>=</mo><mo>−</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>. For integers <span><math><mi>t</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>k</mi><mo>≥</mo><mn>1</mn></math></span>, let <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> denote the number of hooks of length <em>k</em> in all the <em>t</em>-regular partitions of <em>n</em>. We find generating functions of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for certain values of <em>t</em> and <em>k</em>. Exploring hook length biases for <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, we observe that in certain cases biases are opposite to the biases for ordinary partitions. We prove that <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>></mo><mn>4</mn></math></span>, whereas <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>≥</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for all <span><math><mi>n</mi><mo>≥</mo><mn>0</mn></math></span>. We also propose some conjectures on biases among <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究普通分区和 t-regular 分区的钩长。我们建立了普通分区的钩长偏差,并在此基础上发现了 2-regular 分区中一些有趣的钩长偏差。对于正整数 k,让 p(k)(n) 表示 n 的所有分区中长度为 k 的钩码数。我们证明,对于所有 n≥0 和 n≠k+1 的情况,p(k)(n)≥p(k+1)(n);对于 k≥2 的情况,p(k)(k+1)-p(k+1)(k+1)=-1。对于整数 t≥2 和 k≥1,让 bt,k(n)表示 n 的所有 t 规则分区中长度为 k 的钩子数。我们发现 bt,k(n)在某些 t 和 k 值下的生成函数。在探索 bt,k(n)的钩码长度偏差时,我们发现在某些情况下偏差与普通分区的偏差相反。我们证明了对于所有 n>4 b2,2(n)≥b2,1(n),而对于所有 n≥0 b2,2(n)≥b2,3(n)。我们还提出了一些关于 bt,k(n) 偏差的猜想。
Hook length biases in ordinary and t-regular partitions
In this article, we study hook lengths of ordinary partitions and t-regular partitions. We establish hook length biases for the ordinary partitions and motivated by them we find a few interesting hook length biases in 2-regular partitions. For a positive integer k, let denote the number of hooks of length k in all the partitions of n. We prove that for all and ; and for . For integers and , let denote the number of hooks of length k in all the t-regular partitions of n. We find generating functions of for certain values of t and k. Exploring hook length biases for , we observe that in certain cases biases are opposite to the biases for ordinary partitions. We prove that for all , whereas for all . We also propose some conjectures on biases among .