对 "牛顿法的典型动力学 "的更正[Topol. Appl.

IF 0.6 4区 数学 Q3 MATHEMATICS
Jan Dudák , T.H. Steele
{"title":"对 \"牛顿法的典型动力学 \"的更正[Topol. Appl.","authors":"Jan Dudák ,&nbsp;T.H. Steele","doi":"10.1016/j.topol.2024.108986","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> be the space of continuously differentiable real-valued functions defined on <span><math><mo>[</mo><mo>−</mo><mi>M</mi><mo>,</mo><mi>M</mi><mo>]</mo></math></span>. Here, we address an irremediable flaw found in <span>[4]</span>, and show that for the typical element <em>f</em> in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>, there exists a set <span><math><mi>S</mi><mo>⊆</mo><mo>[</mo><mo>−</mo><mi>M</mi><mo>,</mo><mi>M</mi><mo>]</mo></math></span>, both residual and of full measure in <span><math><mo>[</mo><mo>−</mo><mi>M</mi><mo>,</mo><mi>M</mi><mo>]</mo></math></span>, such that for any <span><math><mi>x</mi><mo>∈</mo><mi>S</mi></math></span>, the trajectory generated by Newton's method using <em>f</em> and <em>x</em> either diverges, converges to a root of <em>f</em>, or generates a Cantor set as its attractor. Whenever the Cantor set is the attractor, the dynamics on the attractor are described by a single type of adding machine, so that the dynamics on all of these attracting Cantor sets are topologically equivalent.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"354 ","pages":"Article 108986"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166864124001718/pdfft?md5=cee850ac49fa85977ac1cc21ab194a29&pid=1-s2.0-S0166864124001718-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Corrigendum to “Typical dynamics of Newton's method” [Topol. Appl. 318 (2022) 108201]\",\"authors\":\"Jan Dudák ,&nbsp;T.H. Steele\",\"doi\":\"10.1016/j.topol.2024.108986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span> be the space of continuously differentiable real-valued functions defined on <span><math><mo>[</mo><mo>−</mo><mi>M</mi><mo>,</mo><mi>M</mi><mo>]</mo></math></span>. Here, we address an irremediable flaw found in <span>[4]</span>, and show that for the typical element <em>f</em> in <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>, there exists a set <span><math><mi>S</mi><mo>⊆</mo><mo>[</mo><mo>−</mo><mi>M</mi><mo>,</mo><mi>M</mi><mo>]</mo></math></span>, both residual and of full measure in <span><math><mo>[</mo><mo>−</mo><mi>M</mi><mo>,</mo><mi>M</mi><mo>]</mo></math></span>, such that for any <span><math><mi>x</mi><mo>∈</mo><mi>S</mi></math></span>, the trajectory generated by Newton's method using <em>f</em> and <em>x</em> either diverges, converges to a root of <em>f</em>, or generates a Cantor set as its attractor. Whenever the Cantor set is the attractor, the dynamics on the attractor are described by a single type of adding machine, so that the dynamics on all of these attracting Cantor sets are topologically equivalent.</p></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"354 \",\"pages\":\"Article 108986\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166864124001718/pdfft?md5=cee850ac49fa85977ac1cc21ab194a29&pid=1-s2.0-S0166864124001718-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124001718\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124001718","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 C1(M) 是定义在 [-M,M] 上的连续可微实值函数空间。在此,我们针对[4]中发现的一个无法弥补的缺陷,证明对于 C1(M) 中的典型元素 f,存在一个集合 S⊆[-M,M],它既是残差集合,又是[-M,M]中的全度量集合,这样,对于任意 x∈S,牛顿法利用 f 和 x 生成的轨迹要么发散,要么收敛于 f 的一个根,要么生成一个 Cantor 集作为其吸引子。每当康托集是吸引子时,吸引子上的动力学都是由单一类型的加法机描述的,因此所有这些吸引康托集上的动力学在拓扑上都是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrigendum to “Typical dynamics of Newton's method” [Topol. Appl. 318 (2022) 108201]

Let C1(M) be the space of continuously differentiable real-valued functions defined on [M,M]. Here, we address an irremediable flaw found in [4], and show that for the typical element f in C1(M), there exists a set S[M,M], both residual and of full measure in [M,M], such that for any xS, the trajectory generated by Newton's method using f and x either diverges, converges to a root of f, or generates a Cantor set as its attractor. Whenever the Cantor set is the attractor, the dynamics on the attractor are described by a single type of adding machine, so that the dynamics on all of these attracting Cantor sets are topologically equivalent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信