Daniela Prates Chiarelli , Bishal Dev Sharma , Shuen Hon , Luana Walravens Bergamo , Lee R. Lynd , Daniel G. Olson
{"title":"热梭菌中单功能醇脱氢酶的表达和特性分析","authors":"Daniela Prates Chiarelli , Bishal Dev Sharma , Shuen Hon , Luana Walravens Bergamo , Lee R. Lynd , Daniel G. Olson","doi":"10.1016/j.mec.2024.e00243","DOIUrl":null,"url":null,"abstract":"<div><p><em>Clostridium thermocellum</em> is a thermophilic anaerobic bacterium that could be used for cellulosic biofuel production due to its strong native ability to consume cellulose, however its ethanol production ability needs to be improved to enable commercial application. In our previous strain engineering work, we observed a spontaneous mutation in the native <em>adhE</em> gene that reduced ethanol production. Here we attempted to complement this mutation by heterologous expression of 18 different alcohol dehydrogenase (<em>adh)</em> genes. We were able to express all of them successfully in <em>C. thermocellum</em>. Surprisingly, however, none of them increased ethanol production, and several actually <em>decreased</em> it. Our findings contribute to understanding the correlation between <em>C. thermocellum</em> ethanol production and Adh enzyme cofactor preferences. The identification of a set of <em>adh</em> genes that can be successfully expressed in this organism provides a foundation for future investigations into how the properties of Adh enzymes affect ethanol production.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000129/pdfft?md5=5d222b62409146f886808888e57c6440&pid=1-s2.0-S2214030124000129-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Expression and characterization of monofunctional alcohol dehydrogenase enzymes in Clostridium thermocellum\",\"authors\":\"Daniela Prates Chiarelli , Bishal Dev Sharma , Shuen Hon , Luana Walravens Bergamo , Lee R. Lynd , Daniel G. Olson\",\"doi\":\"10.1016/j.mec.2024.e00243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Clostridium thermocellum</em> is a thermophilic anaerobic bacterium that could be used for cellulosic biofuel production due to its strong native ability to consume cellulose, however its ethanol production ability needs to be improved to enable commercial application. In our previous strain engineering work, we observed a spontaneous mutation in the native <em>adhE</em> gene that reduced ethanol production. Here we attempted to complement this mutation by heterologous expression of 18 different alcohol dehydrogenase (<em>adh)</em> genes. We were able to express all of them successfully in <em>C. thermocellum</em>. Surprisingly, however, none of them increased ethanol production, and several actually <em>decreased</em> it. Our findings contribute to understanding the correlation between <em>C. thermocellum</em> ethanol production and Adh enzyme cofactor preferences. The identification of a set of <em>adh</em> genes that can be successfully expressed in this organism provides a foundation for future investigations into how the properties of Adh enzymes affect ethanol production.</p></div>\",\"PeriodicalId\":18695,\"journal\":{\"name\":\"Metabolic Engineering Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214030124000129/pdfft?md5=5d222b62409146f886808888e57c6440&pid=1-s2.0-S2214030124000129-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic Engineering Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214030124000129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030124000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Expression and characterization of monofunctional alcohol dehydrogenase enzymes in Clostridium thermocellum
Clostridium thermocellum is a thermophilic anaerobic bacterium that could be used for cellulosic biofuel production due to its strong native ability to consume cellulose, however its ethanol production ability needs to be improved to enable commercial application. In our previous strain engineering work, we observed a spontaneous mutation in the native adhE gene that reduced ethanol production. Here we attempted to complement this mutation by heterologous expression of 18 different alcohol dehydrogenase (adh) genes. We were able to express all of them successfully in C. thermocellum. Surprisingly, however, none of them increased ethanol production, and several actually decreased it. Our findings contribute to understanding the correlation between C. thermocellum ethanol production and Adh enzyme cofactor preferences. The identification of a set of adh genes that can be successfully expressed in this organism provides a foundation for future investigations into how the properties of Adh enzymes affect ethanol production.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.