水离子电池中的石墨二炔综述

IF 5.7 3区 材料科学 Q2 Materials Science
Xian-min Xu , Wen-cong Feng , Jing-ke Ren , Wen Luo
{"title":"水离子电池中的石墨二炔综述","authors":"Xian-min Xu ,&nbsp;Wen-cong Feng ,&nbsp;Jing-ke Ren ,&nbsp;Wen Luo","doi":"10.1016/S1872-5805(24)60852-8","DOIUrl":null,"url":null,"abstract":"<div><p>Graphdiyne is a novel carbon material with a special carbon hybrid arrangement, unique chemical and electronic structure and numerous pores that has promising applications in electrochemical energy storage. Emerging aqueous ion batteries have advantages of low cost and high safety, but the development of high-performance electrode materials, the design of new membrane systems and ways of stabilizing the interface remain the main challenges in their manufacture. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stabilizing the pH value of the interface. A bottom-up molecular structural design strategy makes graphdiyne easy to modify and dope, improving the properties of its analogues and thus expanding their applications in aqueous ion batteries. We systematically summarize the structure, properties, and synthesis methods of graphdiyne, and summarize the research of graphdiyne in aqueous ion batteries. A comprehensive evaluation of the existing problems and challenges of the use of graphdiyne in aqueous ion batteries is given, and future trends and developments are suggested.</p></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"39 3","pages":"Pages 388-406"},"PeriodicalIF":5.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of graphdiyne in aqueous ion batteries\",\"authors\":\"Xian-min Xu ,&nbsp;Wen-cong Feng ,&nbsp;Jing-ke Ren ,&nbsp;Wen Luo\",\"doi\":\"10.1016/S1872-5805(24)60852-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphdiyne is a novel carbon material with a special carbon hybrid arrangement, unique chemical and electronic structure and numerous pores that has promising applications in electrochemical energy storage. Emerging aqueous ion batteries have advantages of low cost and high safety, but the development of high-performance electrode materials, the design of new membrane systems and ways of stabilizing the interface remain the main challenges in their manufacture. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stabilizing the pH value of the interface. A bottom-up molecular structural design strategy makes graphdiyne easy to modify and dope, improving the properties of its analogues and thus expanding their applications in aqueous ion batteries. We systematically summarize the structure, properties, and synthesis methods of graphdiyne, and summarize the research of graphdiyne in aqueous ion batteries. A comprehensive evaluation of the existing problems and challenges of the use of graphdiyne in aqueous ion batteries is given, and future trends and developments are suggested.</p></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"39 3\",\"pages\":\"Pages 388-406\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580524608528\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580524608528","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

Graphdiyne 是一种新型碳材料,具有特殊的碳混合排列、独特的化学和电子结构以及众多孔隙,在电化学储能领域具有广阔的应用前景。新兴的水离子电池具有成本低、安全性高的优点,但高性能电极材料的开发、新型膜系统的设计以及稳定界面的方法仍是其制造过程中的主要挑战。石墨炔具有独特的多孔结构和优异的电化学性能,可在阳极保护、阴极包覆、膜设计和稳定界面 pH 值等方面改善离子传输、界面沉积行为和电解质不稳定性。自下而上的分子结构设计策略使石墨二炔易于改性和掺杂,改善了其类似物的性能,从而扩大了它们在水离子电池中的应用。我们系统地总结了石墨二炔的结构、性能和合成方法,并总结了石墨二炔在水离子电池中的研究。全面评估了石墨二炔在水离子电池中应用的现有问题和挑战,并提出了未来的趋势和发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of graphdiyne in aqueous ion batteries

Graphdiyne is a novel carbon material with a special carbon hybrid arrangement, unique chemical and electronic structure and numerous pores that has promising applications in electrochemical energy storage. Emerging aqueous ion batteries have advantages of low cost and high safety, but the development of high-performance electrode materials, the design of new membrane systems and ways of stabilizing the interface remain the main challenges in their manufacture. With its unique porous structure and excellent electrochemical properties, graphdiyne can improve ion transport, interface deposition behavior and electrolyte instability in the aspects of anode protection, cathode cladding, membrane design and stabilizing the pH value of the interface. A bottom-up molecular structural design strategy makes graphdiyne easy to modify and dope, improving the properties of its analogues and thus expanding their applications in aqueous ion batteries. We systematically summarize the structure, properties, and synthesis methods of graphdiyne, and summarize the research of graphdiyne in aqueous ion batteries. A comprehensive evaluation of the existing problems and challenges of the use of graphdiyne in aqueous ion batteries is given, and future trends and developments are suggested.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信