Bakr Ahmed Taha , Ehsan M. Abbas , Ahmed C. Kadhim , Ahmad S. Azzahrani , Adawiya J. Haider , Vishal Chaudhary , Norhana Arsad
{"title":"针散射光引导芯片与人工智能相结合,用于先进的生物医学应用","authors":"Bakr Ahmed Taha , Ehsan M. Abbas , Ahmed C. Kadhim , Ahmad S. Azzahrani , Adawiya J. Haider , Vishal Chaudhary , Norhana Arsad","doi":"10.1016/j.mee.2024.112228","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, integrating artificial intelligence (AI) with needle scattered light (NSL)-guided chiplets (minuscule circuits) is emerging as a fascinating platform for advanced biomedical applications. This connectivity can facilitate real-time medical operations and generate accurate informatics for more competent telemedicine and enhanced healthcare delivery. To explore this technological concept and cover the related challenges, this comprehensive perspective article covers NSL technology, AI-powered chiplets designs, and the creation of a revolutionary biomedical platform to manage health wellness. For example, this report highlights the development of organs-on-chip, the advancement of remote robotics' human-machine interfaces, the incorporation of MHNN, the possibilities of brain-computer connections, and the challenges of keeping up with the exponential growth of AI and ML computing.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Needle scattered light guided chiplets-interfaced with AI for advanced biomedical application\",\"authors\":\"Bakr Ahmed Taha , Ehsan M. Abbas , Ahmed C. Kadhim , Ahmad S. Azzahrani , Adawiya J. Haider , Vishal Chaudhary , Norhana Arsad\",\"doi\":\"10.1016/j.mee.2024.112228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, integrating artificial intelligence (AI) with needle scattered light (NSL)-guided chiplets (minuscule circuits) is emerging as a fascinating platform for advanced biomedical applications. This connectivity can facilitate real-time medical operations and generate accurate informatics for more competent telemedicine and enhanced healthcare delivery. To explore this technological concept and cover the related challenges, this comprehensive perspective article covers NSL technology, AI-powered chiplets designs, and the creation of a revolutionary biomedical platform to manage health wellness. For example, this report highlights the development of organs-on-chip, the advancement of remote robotics' human-machine interfaces, the incorporation of MHNN, the possibilities of brain-computer connections, and the challenges of keeping up with the exponential growth of AI and ML computing.</p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931724000972\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000972","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
最近,将人工智能(AI)与针散射光(NSL)引导的芯片(微小电路)相结合,正在成为先进生物医学应用的一个令人着迷的平台。这种连接可促进实时医疗操作,并生成准确的信息,从而提高远程医疗和医疗服务的能力。为了探索这一技术概念并应对相关挑战,这篇全面的视角文章涵盖了 NSL 技术、人工智能驱动的芯片设计,以及用于管理健康的革命性生物医学平台的创建。例如,本报告重点介绍了片上器官的发展、远程机器人人机界面的进步、MHNN 的融入、脑机连接的可能性,以及跟上人工智能和 ML 计算指数级增长所面临的挑战。
Needle scattered light guided chiplets-interfaced with AI for advanced biomedical application
Recently, integrating artificial intelligence (AI) with needle scattered light (NSL)-guided chiplets (minuscule circuits) is emerging as a fascinating platform for advanced biomedical applications. This connectivity can facilitate real-time medical operations and generate accurate informatics for more competent telemedicine and enhanced healthcare delivery. To explore this technological concept and cover the related challenges, this comprehensive perspective article covers NSL technology, AI-powered chiplets designs, and the creation of a revolutionary biomedical platform to manage health wellness. For example, this report highlights the development of organs-on-chip, the advancement of remote robotics' human-machine interfaces, the incorporation of MHNN, the possibilities of brain-computer connections, and the challenges of keeping up with the exponential growth of AI and ML computing.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.