Shengjie Wang , Yuqing Qian , Kei Yoshimura , Hayoung Bong , Camille Risi , Zhongwang Wei , Hongxi Pang , Wei Xiao , Shijun Lei , Meng Xing , Pei Zhao , Huawu Wu , Yudong Shi , Di Wang , Mingjun Zhang
{"title":"同位素气候模式对东亚日表面水蒸气的影响","authors":"Shengjie Wang , Yuqing Qian , Kei Yoshimura , Hayoung Bong , Camille Risi , Zhongwang Wei , Hongxi Pang , Wei Xiao , Shijun Lei , Meng Xing , Pei Zhao , Huawu Wu , Yudong Shi , Di Wang , Mingjun Zhang","doi":"10.1016/j.gloplacha.2024.104502","DOIUrl":null,"url":null,"abstract":"<div><p>The isotope-enabled general circulation models (GCM) have been widely applied to simulate the variability of stable isotopes in meteoric water at various time scales. The in-situ observations of water vapour isotopes are an important basis for assessing the performance of isotope-enabled GCMs, although they are still limited. Here we compiled the observations of near-surface water vapour isotopes on a daily scale at 17 stations in East Asia, and assessed the skill and the association between isotope error and meteorological errors on a daily scale. Generally, the spatial pattern and seasonal variability can be well simulated in the isotope-enabled GCMs. The models show better skill for warm and humid backgrounds, which also corresponds to the monsoonal regions with lower latitudes in East Asia. As spatial resolution is finer, the skill of models is better, which can be seen from the two GCMs. According to the correlation coefficient, the improvement of resolution is more obvious in summer than in winter, especially for IsoGSM. In addition, the correlation coefficient in winter is usually larger than that in summer. The daily modelling has good potential to investigate the daily or synoptic climate information in water isotopes. The findings are useful for understanding the applicability of isotope-enabled models in East Asia and the climate factors influencing the skill of isotope-enabled models on a daily basis.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skill of isotope-enabled climate models for daily surface water vapour in East Asia\",\"authors\":\"Shengjie Wang , Yuqing Qian , Kei Yoshimura , Hayoung Bong , Camille Risi , Zhongwang Wei , Hongxi Pang , Wei Xiao , Shijun Lei , Meng Xing , Pei Zhao , Huawu Wu , Yudong Shi , Di Wang , Mingjun Zhang\",\"doi\":\"10.1016/j.gloplacha.2024.104502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The isotope-enabled general circulation models (GCM) have been widely applied to simulate the variability of stable isotopes in meteoric water at various time scales. The in-situ observations of water vapour isotopes are an important basis for assessing the performance of isotope-enabled GCMs, although they are still limited. Here we compiled the observations of near-surface water vapour isotopes on a daily scale at 17 stations in East Asia, and assessed the skill and the association between isotope error and meteorological errors on a daily scale. Generally, the spatial pattern and seasonal variability can be well simulated in the isotope-enabled GCMs. The models show better skill for warm and humid backgrounds, which also corresponds to the monsoonal regions with lower latitudes in East Asia. As spatial resolution is finer, the skill of models is better, which can be seen from the two GCMs. According to the correlation coefficient, the improvement of resolution is more obvious in summer than in winter, especially for IsoGSM. In addition, the correlation coefficient in winter is usually larger than that in summer. The daily modelling has good potential to investigate the daily or synoptic climate information in water isotopes. The findings are useful for understanding the applicability of isotope-enabled models in East Asia and the climate factors influencing the skill of isotope-enabled models on a daily basis.</p></div>\",\"PeriodicalId\":55089,\"journal\":{\"name\":\"Global and Planetary Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global and Planetary Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921818124001498\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124001498","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Skill of isotope-enabled climate models for daily surface water vapour in East Asia
The isotope-enabled general circulation models (GCM) have been widely applied to simulate the variability of stable isotopes in meteoric water at various time scales. The in-situ observations of water vapour isotopes are an important basis for assessing the performance of isotope-enabled GCMs, although they are still limited. Here we compiled the observations of near-surface water vapour isotopes on a daily scale at 17 stations in East Asia, and assessed the skill and the association between isotope error and meteorological errors on a daily scale. Generally, the spatial pattern and seasonal variability can be well simulated in the isotope-enabled GCMs. The models show better skill for warm and humid backgrounds, which also corresponds to the monsoonal regions with lower latitudes in East Asia. As spatial resolution is finer, the skill of models is better, which can be seen from the two GCMs. According to the correlation coefficient, the improvement of resolution is more obvious in summer than in winter, especially for IsoGSM. In addition, the correlation coefficient in winter is usually larger than that in summer. The daily modelling has good potential to investigate the daily or synoptic climate information in water isotopes. The findings are useful for understanding the applicability of isotope-enabled models in East Asia and the climate factors influencing the skill of isotope-enabled models on a daily basis.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.