{"title":"线性扩展和续分数","authors":"Swee Hong Chan , Igor Pak","doi":"10.1016/j.ejc.2024.104018","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce several new constructions of finite posets with the number of linear extensions given by generalized continued fractions. We apply our results to the problem of the minimum number of elements needed for a poset with a given number of linear extensions.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001033/pdfft?md5=54c557aaf8c82af5cc506fbf46b6ca94&pid=1-s2.0-S0195669824001033-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Linear extensions and continued fractions\",\"authors\":\"Swee Hong Chan , Igor Pak\",\"doi\":\"10.1016/j.ejc.2024.104018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce several new constructions of finite posets with the number of linear extensions given by generalized continued fractions. We apply our results to the problem of the minimum number of elements needed for a poset with a given number of linear extensions.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001033/pdfft?md5=54c557aaf8c82af5cc506fbf46b6ca94&pid=1-s2.0-S0195669824001033-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001033\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We introduce several new constructions of finite posets with the number of linear extensions given by generalized continued fractions. We apply our results to the problem of the minimum number of elements needed for a poset with a given number of linear extensions.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.