线性扩展和续分数

IF 1 3区 数学 Q1 MATHEMATICS
Swee Hong Chan , Igor Pak
{"title":"线性扩展和续分数","authors":"Swee Hong Chan ,&nbsp;Igor Pak","doi":"10.1016/j.ejc.2024.104018","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce several new constructions of finite posets with the number of linear extensions given by generalized continued fractions. We apply our results to the problem of the minimum number of elements needed for a poset with a given number of linear extensions.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669824001033/pdfft?md5=54c557aaf8c82af5cc506fbf46b6ca94&pid=1-s2.0-S0195669824001033-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Linear extensions and continued fractions\",\"authors\":\"Swee Hong Chan ,&nbsp;Igor Pak\",\"doi\":\"10.1016/j.ejc.2024.104018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce several new constructions of finite posets with the number of linear extensions given by generalized continued fractions. We apply our results to the problem of the minimum number of elements needed for a poset with a given number of linear extensions.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001033/pdfft?md5=54c557aaf8c82af5cc506fbf46b6ca94&pid=1-s2.0-S0195669824001033-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001033\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001033","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了几种有限正集的新构造,其线性扩展数由广义连续分数给出。我们将我们的结果应用于具有给定线性扩展数的正集合所需的最小元素数问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear extensions and continued fractions

We introduce several new constructions of finite posets with the number of linear extensions given by generalized continued fractions. We apply our results to the problem of the minimum number of elements needed for a poset with a given number of linear extensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信