Ali H. Meftah , Yousef A. Alotaibi , Sid Ahmed Selouani
{"title":"StarGANv2-VC 在阿拉伯语情感语音转换中的可扩展性和多样性:克服数据限制并提高性能","authors":"Ali H. Meftah , Yousef A. Alotaibi , Sid Ahmed Selouani","doi":"10.1016/j.jksuci.2024.102091","DOIUrl":null,"url":null,"abstract":"<div><p>Emotional Voice Conversion (EVC) for under-resourced languages like Arabic faces challenges due to limited emotional speech data. This study explored strategies to mitigate dataset scarcity and improve Arabic EVC performance. Fundamental experiments (Speaker-Dependent, Gender-Dependent, Gender-Independent) were conducted using the KSUEmotions dataset to analyze speaker, gender, and model impacts. Data augmentation techniques like time stretching and phase shuffling artificially increased data diversity. Attention mechanisms integrated into StarGANv2-VC aimed to better capture emotional cues. Transfer learning leveraged the larger English Emotional Speech Database (ESD) to enhance the Arabic system. A novel “Reordering Speaker-Emotion Data” approach treated each emotion as a separate speaker to expand the emotional variability. Our comprehensive approach, combining transfer learning, data augmentation, and architectural modifications, demonstrates the potential to overcome dataset limitations and enhance the performance of Arabic EVC systems.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824001800/pdfft?md5=6225b12a8e2dd7caf92c9cebc9d43dd5&pid=1-s2.0-S1319157824001800-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Scalability and diversity of StarGANv2-VC in Arabic emotional voice conversion: Overcoming data limitations and enhancing performance\",\"authors\":\"Ali H. Meftah , Yousef A. Alotaibi , Sid Ahmed Selouani\",\"doi\":\"10.1016/j.jksuci.2024.102091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Emotional Voice Conversion (EVC) for under-resourced languages like Arabic faces challenges due to limited emotional speech data. This study explored strategies to mitigate dataset scarcity and improve Arabic EVC performance. Fundamental experiments (Speaker-Dependent, Gender-Dependent, Gender-Independent) were conducted using the KSUEmotions dataset to analyze speaker, gender, and model impacts. Data augmentation techniques like time stretching and phase shuffling artificially increased data diversity. Attention mechanisms integrated into StarGANv2-VC aimed to better capture emotional cues. Transfer learning leveraged the larger English Emotional Speech Database (ESD) to enhance the Arabic system. A novel “Reordering Speaker-Emotion Data” approach treated each emotion as a separate speaker to expand the emotional variability. Our comprehensive approach, combining transfer learning, data augmentation, and architectural modifications, demonstrates the potential to overcome dataset limitations and enhance the performance of Arabic EVC systems.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824001800/pdfft?md5=6225b12a8e2dd7caf92c9cebc9d43dd5&pid=1-s2.0-S1319157824001800-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824001800\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824001800","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Scalability and diversity of StarGANv2-VC in Arabic emotional voice conversion: Overcoming data limitations and enhancing performance
Emotional Voice Conversion (EVC) for under-resourced languages like Arabic faces challenges due to limited emotional speech data. This study explored strategies to mitigate dataset scarcity and improve Arabic EVC performance. Fundamental experiments (Speaker-Dependent, Gender-Dependent, Gender-Independent) were conducted using the KSUEmotions dataset to analyze speaker, gender, and model impacts. Data augmentation techniques like time stretching and phase shuffling artificially increased data diversity. Attention mechanisms integrated into StarGANv2-VC aimed to better capture emotional cues. Transfer learning leveraged the larger English Emotional Speech Database (ESD) to enhance the Arabic system. A novel “Reordering Speaker-Emotion Data” approach treated each emotion as a separate speaker to expand the emotional variability. Our comprehensive approach, combining transfer learning, data augmentation, and architectural modifications, demonstrates the potential to overcome dataset limitations and enhance the performance of Arabic EVC systems.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.