利用深度学习模型对日流量预报中输入变量和时滞选择的新见解

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Amina Khatun , M.N. Nisha , Siddharth Chatterjee , Venkataramana Sridhar
{"title":"利用深度学习模型对日流量预报中输入变量和时滞选择的新见解","authors":"Amina Khatun ,&nbsp;M.N. Nisha ,&nbsp;Siddharth Chatterjee ,&nbsp;Venkataramana Sridhar","doi":"10.1016/j.envsoft.2024.106126","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the feasibility of using hybrid models namely Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)-Gated Recurrent Unit (GRU), for short-to-medium range streamflow forecasting in the Mahanadi River basin in India. The performance of these hybrid models is compared with that of standalone models. It investigates the impact of selected parameters and associated time lags on the model performance and offers valuable insights into the use of hybrid models for runoff simulation. The hybrid CNN-LSTM model proves to be robust in capturing the overall time series and the typical high peak flows in both the correlation-based and constant lag cases. Also, the upstream discharges play a significant role in improving the streamflow forecasting. Furthermore, the consideration of all input variables with a constant time lag equal to the basin lag time may yield better flood forecasts, even in cases where computational resources are limited.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel insight on input variable and time lag selection in daily streamflow forecasting using deep learning models\",\"authors\":\"Amina Khatun ,&nbsp;M.N. Nisha ,&nbsp;Siddharth Chatterjee ,&nbsp;Venkataramana Sridhar\",\"doi\":\"10.1016/j.envsoft.2024.106126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the feasibility of using hybrid models namely Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)-Gated Recurrent Unit (GRU), for short-to-medium range streamflow forecasting in the Mahanadi River basin in India. The performance of these hybrid models is compared with that of standalone models. It investigates the impact of selected parameters and associated time lags on the model performance and offers valuable insights into the use of hybrid models for runoff simulation. The hybrid CNN-LSTM model proves to be robust in capturing the overall time series and the typical high peak flows in both the correlation-based and constant lag cases. Also, the upstream discharges play a significant role in improving the streamflow forecasting. Furthermore, the consideration of all input variables with a constant time lag equal to the basin lag time may yield better flood forecasts, even in cases where computational resources are limited.</p></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224001877\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001877","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了使用混合模型(即卷积神经网络(CNN)-长短期记忆(LSTM)和卷积神经网络(CNN)-门控递归单元(GRU))进行印度马哈纳迪河流域中短期流量预报的可行性。将这些混合模型的性能与独立模型的性能进行了比较。它研究了所选参数和相关时滞对模型性能的影响,并为将混合模型用于径流模拟提供了有价值的见解。事实证明,在基于相关性和恒定滞后的情况下,混合 CNN-LSTM 模型都能稳健地捕捉整体时间序列和典型的高峰流量。此外,上游排水量在改善流量预测方面也发挥了重要作用。此外,考虑到所有输入变量的恒定时滞等于流域时滞,即使在计算资源有限的情况下,也能获得更好的洪水预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel insight on input variable and time lag selection in daily streamflow forecasting using deep learning models

This study investigates the feasibility of using hybrid models namely Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN)-Gated Recurrent Unit (GRU), for short-to-medium range streamflow forecasting in the Mahanadi River basin in India. The performance of these hybrid models is compared with that of standalone models. It investigates the impact of selected parameters and associated time lags on the model performance and offers valuable insights into the use of hybrid models for runoff simulation. The hybrid CNN-LSTM model proves to be robust in capturing the overall time series and the typical high peak flows in both the correlation-based and constant lag cases. Also, the upstream discharges play a significant role in improving the streamflow forecasting. Furthermore, the consideration of all input variables with a constant time lag equal to the basin lag time may yield better flood forecasts, even in cases where computational resources are limited.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信