在安全的数据集创建环境中使用人工智能的医疗数据结构和分割自动算法

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Varatharajan Nainamalai , Hemin Ali Qair , Egidijus Pelanis , Håvard Bjørke Jenssen , Åsmund Avdem Fretland , Bjørn Edwin , Ole Jakob Elle , Ilangko Balasingham
{"title":"在安全的数据集创建环境中使用人工智能的医疗数据结构和分割自动算法","authors":"Varatharajan Nainamalai ,&nbsp;Hemin Ali Qair ,&nbsp;Egidijus Pelanis ,&nbsp;Håvard Bjørke Jenssen ,&nbsp;Åsmund Avdem Fretland ,&nbsp;Bjørn Edwin ,&nbsp;Ole Jakob Elle ,&nbsp;Ilangko Balasingham","doi":"10.1016/j.ejro.2024.100582","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Routinely collected electronic health records using artificial intelligence (AI)-based systems bring out enormous benefits for patients, healthcare centers, and its industries. Artificial intelligence models can be used to structure a wide variety of unstructured data.</p></div><div><h3>Methods</h3><p>We present a semi-automatic workflow for medical dataset management, including data structuring, research extraction, AI-ground truth creation, and updates. The algorithm creates directories based on keywords in new file names.</p></div><div><h3>Results</h3><p>Our work focuses on organizing computed tomography (CT), magnetic resonance (MR) images, patient clinical data, and segmented annotations. In addition, an AI model is used to generate different initial labels that can be edited manually to create ground truth labels. The manually verified ground truth labels are later included in the structured dataset using an automated algorithm for future research.</p></div><div><h3>Conclusion</h3><p>This is a workflow with an AI model trained on local hospital medical data with output based/adapted to the users and their preferences. The automated algorithms and AI model could be implemented inside a secondary secure environment in the hospital to produce inferences.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":"13 ","pages":"Article 100582"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352047724000376/pdfft?md5=425200236243651a581a0c649773fdeb&pid=1-s2.0-S2352047724000376-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated algorithm for medical data structuring, and segmentation using artificial intelligence within secured environment for dataset creation\",\"authors\":\"Varatharajan Nainamalai ,&nbsp;Hemin Ali Qair ,&nbsp;Egidijus Pelanis ,&nbsp;Håvard Bjørke Jenssen ,&nbsp;Åsmund Avdem Fretland ,&nbsp;Bjørn Edwin ,&nbsp;Ole Jakob Elle ,&nbsp;Ilangko Balasingham\",\"doi\":\"10.1016/j.ejro.2024.100582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>Routinely collected electronic health records using artificial intelligence (AI)-based systems bring out enormous benefits for patients, healthcare centers, and its industries. Artificial intelligence models can be used to structure a wide variety of unstructured data.</p></div><div><h3>Methods</h3><p>We present a semi-automatic workflow for medical dataset management, including data structuring, research extraction, AI-ground truth creation, and updates. The algorithm creates directories based on keywords in new file names.</p></div><div><h3>Results</h3><p>Our work focuses on organizing computed tomography (CT), magnetic resonance (MR) images, patient clinical data, and segmented annotations. In addition, an AI model is used to generate different initial labels that can be edited manually to create ground truth labels. The manually verified ground truth labels are later included in the structured dataset using an automated algorithm for future research.</p></div><div><h3>Conclusion</h3><p>This is a workflow with an AI model trained on local hospital medical data with output based/adapted to the users and their preferences. The automated algorithms and AI model could be implemented inside a secondary secure environment in the hospital to produce inferences.</p></div>\",\"PeriodicalId\":38076,\"journal\":{\"name\":\"European Journal of Radiology Open\",\"volume\":\"13 \",\"pages\":\"Article 100582\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352047724000376/pdfft?md5=425200236243651a581a0c649773fdeb&pid=1-s2.0-S2352047724000376-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Radiology Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352047724000376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的使用基于人工智能(AI)的系统例行收集电子健康记录可为患者、医疗保健中心及其行业带来巨大利益。人工智能模型可用于构建各种非结构化数据。方法我们提出了一种用于医疗数据集管理的半自动工作流程,包括数据构建、研究提取、人工智能地面实况创建和更新。该算法根据新文件名中的关键字创建目录。结果我们的工作重点是组织计算机断层扫描(CT)、磁共振(MR)图像、患者临床数据和分割注释。此外,我们还利用人工智能模型生成了不同的初始标签,这些标签可以通过手动编辑来创建基本真实标签。经人工验证的基本真实标签随后将使用自动算法纳入结构化数据集,供未来研究使用。自动算法和人工智能模型可在医院的二级安全环境中实施,以产生推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated algorithm for medical data structuring, and segmentation using artificial intelligence within secured environment for dataset creation

Objective

Routinely collected electronic health records using artificial intelligence (AI)-based systems bring out enormous benefits for patients, healthcare centers, and its industries. Artificial intelligence models can be used to structure a wide variety of unstructured data.

Methods

We present a semi-automatic workflow for medical dataset management, including data structuring, research extraction, AI-ground truth creation, and updates. The algorithm creates directories based on keywords in new file names.

Results

Our work focuses on organizing computed tomography (CT), magnetic resonance (MR) images, patient clinical data, and segmented annotations. In addition, an AI model is used to generate different initial labels that can be edited manually to create ground truth labels. The manually verified ground truth labels are later included in the structured dataset using an automated algorithm for future research.

Conclusion

This is a workflow with an AI model trained on local hospital medical data with output based/adapted to the users and their preferences. The automated algorithms and AI model could be implemented inside a secondary secure environment in the hospital to produce inferences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信