惠勒-德威特量子引力中的黑洞奇点解析

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Harpreet Singh, Malay K. Nandy
{"title":"惠勒-德威特量子引力中的黑洞奇点解析","authors":"Harpreet Singh,&nbsp;Malay K. Nandy","doi":"10.1016/j.aop.2024.169719","DOIUrl":null,"url":null,"abstract":"<div><p>Ever since Hawking highlighted the puzzle of the existence of a singularity in the classical spacetime of general relativity, implying breakdown of all laws of physics living in the classical spacetime, singularity resolution became a problem of significantly high importance. This undesirable feature, indicating loss of predictability, has intrigued physicists over several decades. It has been hoped that the classical singularity would be resolved in a quantum theory of gravity. However, no appropriate wave function in the vicinity of the black hole singularity has been obtained so far to reach a definite conclusion.</p><p>In this paper, we focus upon the interior of the Schwarzschild black hole, plagued by a non-removable classical singularity. We consider the interior spacetime of the black hole to be represented by the Kantowski–Sachs metric. Since in a quantum mechanical scenario, existence of spontaneous fluctuations of matter fields should not be ignored, we include a Klein–Gordon field in the system. Quantizing this simple gravity-matter model in the canonical scheme, we obtain the Wheeler–DeWitt equation and find an exact solution in the minisuperspace variables.</p><p>We find that there exist three classes of solutions belonging to three different subregions of the eigenvalue space. Two of these classes of solutions admit the DeWitt criterion, a necessary condition for singularity resolution, implied by vanishing of the wave function at the singularity. These solutions are well-behaved and finite in the vicinity of the singularity and they indicate the existence of regular black holes in quantum gravity. In these classes of solutions, we further find that the expectation value of the Kretschmann operator is well-behaved and regular near the singularity, confirming a definite resolution to the puzzle of classical black hole singularity. On the other hand, there exists a small subregion in the eigenvalue space where the solution does not satisfy both conditions, the DeWitt criterion and finiteness of the Kretschmann expectation value at the singularity. This last class of solutions does not represent regular quantum black holes.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"468 ","pages":"Article 169719"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Black hole singularity resolution in Wheeler–DeWitt quantum gravity\",\"authors\":\"Harpreet Singh,&nbsp;Malay K. Nandy\",\"doi\":\"10.1016/j.aop.2024.169719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ever since Hawking highlighted the puzzle of the existence of a singularity in the classical spacetime of general relativity, implying breakdown of all laws of physics living in the classical spacetime, singularity resolution became a problem of significantly high importance. This undesirable feature, indicating loss of predictability, has intrigued physicists over several decades. It has been hoped that the classical singularity would be resolved in a quantum theory of gravity. However, no appropriate wave function in the vicinity of the black hole singularity has been obtained so far to reach a definite conclusion.</p><p>In this paper, we focus upon the interior of the Schwarzschild black hole, plagued by a non-removable classical singularity. We consider the interior spacetime of the black hole to be represented by the Kantowski–Sachs metric. Since in a quantum mechanical scenario, existence of spontaneous fluctuations of matter fields should not be ignored, we include a Klein–Gordon field in the system. Quantizing this simple gravity-matter model in the canonical scheme, we obtain the Wheeler–DeWitt equation and find an exact solution in the minisuperspace variables.</p><p>We find that there exist three classes of solutions belonging to three different subregions of the eigenvalue space. Two of these classes of solutions admit the DeWitt criterion, a necessary condition for singularity resolution, implied by vanishing of the wave function at the singularity. These solutions are well-behaved and finite in the vicinity of the singularity and they indicate the existence of regular black holes in quantum gravity. In these classes of solutions, we further find that the expectation value of the Kretschmann operator is well-behaved and regular near the singularity, confirming a definite resolution to the puzzle of classical black hole singularity. On the other hand, there exists a small subregion in the eigenvalue space where the solution does not satisfy both conditions, the DeWitt criterion and finiteness of the Kretschmann expectation value at the singularity. This last class of solutions does not represent regular quantum black holes.</p></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"468 \",\"pages\":\"Article 169719\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624001271\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001271","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自从霍金强调广义相对论的经典时空中存在奇点这一难题,意味着生活在经典时空中的所有物理定律都会崩溃之后,奇点的解决就成了一个极为重要的问题。数十年来,这一表明丧失可预测性的不良特征一直困扰着物理学家。人们一直希望经典奇点能在量子引力理论中得到解决。在本文中,我们将重点放在受不可消除的经典奇点困扰的施瓦兹柴尔德黑洞内部。我们认为黑洞内部的时空是由康托斯基-萨克斯(Kantowski-Sachs)度量来表示的。由于在量子力学情景中,物质场自发波动的存在不容忽视,我们在系统中加入了克莱因-戈登场。将这个简单的引力-物质模型按照经典方案量子化后,我们得到了惠勒-德威特方程,并找到了迷你超空间变量的精确解。其中两类解符合 DeWitt 准则,这是奇点解析的一个必要条件,奇点处波函数的消失暗示了这一点。这些解在奇点附近表现良好且有限,表明量子引力中存在规则黑洞。在这些解中,我们进一步发现克雷奇曼算子的期望值在奇点附近是乖离和规则的,这证实了经典黑洞奇点之谜的明确解决。另一方面,在特征值空间存在一个小的子区域,该区域的解同时不满足 DeWitt 准则和奇点处 Kretschmann 期望值的有限性这两个条件。最后一类解并不代表规则量子黑洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black hole singularity resolution in Wheeler–DeWitt quantum gravity

Ever since Hawking highlighted the puzzle of the existence of a singularity in the classical spacetime of general relativity, implying breakdown of all laws of physics living in the classical spacetime, singularity resolution became a problem of significantly high importance. This undesirable feature, indicating loss of predictability, has intrigued physicists over several decades. It has been hoped that the classical singularity would be resolved in a quantum theory of gravity. However, no appropriate wave function in the vicinity of the black hole singularity has been obtained so far to reach a definite conclusion.

In this paper, we focus upon the interior of the Schwarzschild black hole, plagued by a non-removable classical singularity. We consider the interior spacetime of the black hole to be represented by the Kantowski–Sachs metric. Since in a quantum mechanical scenario, existence of spontaneous fluctuations of matter fields should not be ignored, we include a Klein–Gordon field in the system. Quantizing this simple gravity-matter model in the canonical scheme, we obtain the Wheeler–DeWitt equation and find an exact solution in the minisuperspace variables.

We find that there exist three classes of solutions belonging to three different subregions of the eigenvalue space. Two of these classes of solutions admit the DeWitt criterion, a necessary condition for singularity resolution, implied by vanishing of the wave function at the singularity. These solutions are well-behaved and finite in the vicinity of the singularity and they indicate the existence of regular black holes in quantum gravity. In these classes of solutions, we further find that the expectation value of the Kretschmann operator is well-behaved and regular near the singularity, confirming a definite resolution to the puzzle of classical black hole singularity. On the other hand, there exists a small subregion in the eigenvalue space where the solution does not satisfy both conditions, the DeWitt criterion and finiteness of the Kretschmann expectation value at the singularity. This last class of solutions does not represent regular quantum black holes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信