利用深度神经网络进行多步骤风电预测的双层模式分解框架

IF 7.1 Q1 ENERGY & FUELS
Jingxuan Wu , Shuting Li , Juan C. Vasquez , Josep M. Guerrero
{"title":"利用深度神经网络进行多步骤风电预测的双层模式分解框架","authors":"Jingxuan Wu ,&nbsp;Shuting Li ,&nbsp;Juan C. Vasquez ,&nbsp;Josep M. Guerrero","doi":"10.1016/j.ecmx.2024.100650","DOIUrl":null,"url":null,"abstract":"<div><p>The proportion of wind energy in global energy structure is growing rapidly, promoting the development of wind power forecasting (WPF) technologies to solve the uncertainty and intermittence of wind power generation. However, the nonlinear and stochastic features of wind power time series restrain the accuracy of multi-step prediction performance. A multi-step WPF (MS-WPF) approach based on a time series bi-level empirical mode decomposition (BLEMD) method and BiLSTM neural network is proposed in this paper to improve the WPF accuracy of regional wind power generators. Since the uncertainty is always generated through coupled factors from both wind and weather-to-power conversion, the linearity feature is first introduced as an aspect apart from the frequency in the proposed approach to decompose the wind power time sequence data. The proposed BLEMD introduces Pearson product-moment correlation coefficient to evaluate the linearity of time series and a linearity-based decomposition algorithm is designed accordingly. To further enhance the precision and release computation burdens, a DL-based prediction strategy, including a BiLSTM network, a CNN-BiLSTM network, and a mean weight estimation method are implemented to predict the components separately. The proposed method only relies on local data, greatly reducing the data acquisition and computation cost. The precision of the proposed MS-WPF is verified by a 2.5 kW wind turbine with horizons from 5 s to 30 s, a 1.5 MW wind turbine with horizons from 10 min to 1 h, and a 51 MW wind farm with horizons from 1 h to 6 h. The comparative experimental results with other cutting-edge methods indicated that the proposed MS-WPF has superior prediction accuracy and stable performance for multi-step prediction.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001284/pdfft?md5=aa1e63cac612630a2058653ca83b576b&pid=1-s2.0-S2590174524001284-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A bi-level mode decomposition framework for multi-step wind power forecasting using deep neural network\",\"authors\":\"Jingxuan Wu ,&nbsp;Shuting Li ,&nbsp;Juan C. Vasquez ,&nbsp;Josep M. Guerrero\",\"doi\":\"10.1016/j.ecmx.2024.100650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proportion of wind energy in global energy structure is growing rapidly, promoting the development of wind power forecasting (WPF) technologies to solve the uncertainty and intermittence of wind power generation. However, the nonlinear and stochastic features of wind power time series restrain the accuracy of multi-step prediction performance. A multi-step WPF (MS-WPF) approach based on a time series bi-level empirical mode decomposition (BLEMD) method and BiLSTM neural network is proposed in this paper to improve the WPF accuracy of regional wind power generators. Since the uncertainty is always generated through coupled factors from both wind and weather-to-power conversion, the linearity feature is first introduced as an aspect apart from the frequency in the proposed approach to decompose the wind power time sequence data. The proposed BLEMD introduces Pearson product-moment correlation coefficient to evaluate the linearity of time series and a linearity-based decomposition algorithm is designed accordingly. To further enhance the precision and release computation burdens, a DL-based prediction strategy, including a BiLSTM network, a CNN-BiLSTM network, and a mean weight estimation method are implemented to predict the components separately. The proposed method only relies on local data, greatly reducing the data acquisition and computation cost. The precision of the proposed MS-WPF is verified by a 2.5 kW wind turbine with horizons from 5 s to 30 s, a 1.5 MW wind turbine with horizons from 10 min to 1 h, and a 51 MW wind farm with horizons from 1 h to 6 h. The comparative experimental results with other cutting-edge methods indicated that the proposed MS-WPF has superior prediction accuracy and stable performance for multi-step prediction.</p></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001284/pdfft?md5=aa1e63cac612630a2058653ca83b576b&pid=1-s2.0-S2590174524001284-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

风能在全球能源结构中的比例迅速增长,促进了风电预测(WPF)技术的发展,以解决风力发电的不确定性和间歇性问题。然而,风力发电时间序列的非线性和随机性特征限制了多步骤预测性能的准确性。本文提出了一种基于时间序列双电平经验模式分解(BLEMD)方法和 BiLSTM 神经网络的多步骤 WPF(MS-WPF)方法,以提高区域风力发电机的 WPF 精度。由于不确定性总是通过风力和天气转换为电能的耦合因素产生,因此在拟议的方法中首先引入了线性特征作为频率之外的一个方面来分解风力发电时序数据。所提出的 BLEMD 引入了皮尔逊积矩相关系数来评估时间序列的线性度,并据此设计了基于线性度的分解算法。为了进一步提高精度和减轻计算负担,还采用了基于 DL 的预测策略,包括 BiLSTM 网络、CNN-BiLSTM 网络和均值权重估计方法,分别预测各组成部分。所提出的方法只依赖本地数据,大大降低了数据采集和计算成本。与其他前沿方法的对比实验结果表明,所提出的 MS-WPF 在多步预测方面具有更高的预测精度和更稳定的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A bi-level mode decomposition framework for multi-step wind power forecasting using deep neural network

The proportion of wind energy in global energy structure is growing rapidly, promoting the development of wind power forecasting (WPF) technologies to solve the uncertainty and intermittence of wind power generation. However, the nonlinear and stochastic features of wind power time series restrain the accuracy of multi-step prediction performance. A multi-step WPF (MS-WPF) approach based on a time series bi-level empirical mode decomposition (BLEMD) method and BiLSTM neural network is proposed in this paper to improve the WPF accuracy of regional wind power generators. Since the uncertainty is always generated through coupled factors from both wind and weather-to-power conversion, the linearity feature is first introduced as an aspect apart from the frequency in the proposed approach to decompose the wind power time sequence data. The proposed BLEMD introduces Pearson product-moment correlation coefficient to evaluate the linearity of time series and a linearity-based decomposition algorithm is designed accordingly. To further enhance the precision and release computation burdens, a DL-based prediction strategy, including a BiLSTM network, a CNN-BiLSTM network, and a mean weight estimation method are implemented to predict the components separately. The proposed method only relies on local data, greatly reducing the data acquisition and computation cost. The precision of the proposed MS-WPF is verified by a 2.5 kW wind turbine with horizons from 5 s to 30 s, a 1.5 MW wind turbine with horizons from 10 min to 1 h, and a 51 MW wind farm with horizons from 1 h to 6 h. The comparative experimental results with other cutting-edge methods indicated that the proposed MS-WPF has superior prediction accuracy and stable performance for multi-step prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信