具有三个发病阶段的环境传播疾病的多重流行平衡。

IF 1.9 4区 数学 Q2 BIOLOGY
{"title":"具有三个发病阶段的环境传播疾病的多重流行平衡。","authors":"","doi":"10.1016/j.mbs.2024.109244","DOIUrl":null,"url":null,"abstract":"<div><p>We construct, analyze and interpret a mathematical model for an environmental transmitted disease characterized for the existence of three disease stages: acute, severe and asymptomatic. Besides, we consider that severe and asymptomatic cases may present relapse between them. Transmission dynamics driven by the contact rates only occurs when a parameter <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, as normally occur in directly-transmitted or vector-transmitted diseases, but it will not adequately correspond to a basic reproductive number as it depends on environmental parameters. In this case, the forward transcritical bifurcation that exists for <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, becomes a backward bifurcation, producing multiple steady-states, a hysteresis effect and dependence on initial conditions. A threshold parameter for an epidemic outbreak, independent of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> is only the ratio of the external contamination inflow shedding rate to the environmental clearance rate. <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> describes the strength of the transmission to infectious classes other than the <span><math><mi>I</mi></math></span>-(acute) type infections. The epidemic outbreak conditions and the structure of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> appearing in this model are both responsible for the existence of endemic states.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"375 ","pages":"Article 109244"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple endemic equilibria in an environmentally-transmitted disease with three disease stages\",\"authors\":\"\",\"doi\":\"10.1016/j.mbs.2024.109244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct, analyze and interpret a mathematical model for an environmental transmitted disease characterized for the existence of three disease stages: acute, severe and asymptomatic. Besides, we consider that severe and asymptomatic cases may present relapse between them. Transmission dynamics driven by the contact rates only occurs when a parameter <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span>, as normally occur in directly-transmitted or vector-transmitted diseases, but it will not adequately correspond to a basic reproductive number as it depends on environmental parameters. In this case, the forward transcritical bifurcation that exists for <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>&lt;</mo><mn>1</mn></mrow></math></span>, becomes a backward bifurcation, producing multiple steady-states, a hysteresis effect and dependence on initial conditions. A threshold parameter for an epidemic outbreak, independent of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> is only the ratio of the external contamination inflow shedding rate to the environmental clearance rate. <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> describes the strength of the transmission to infectious classes other than the <span><math><mi>I</mi></math></span>-(acute) type infections. The epidemic outbreak conditions and the structure of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>∗</mo></mrow></msub></math></span> appearing in this model are both responsible for the existence of endemic states.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"375 \",\"pages\":\"Article 109244\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们构建、分析和解释了一种环境传播疾病的数学模型,该模型的特点是存在三个疾病阶段:急性、严重和无症状。此外,我们还考虑到重症病例和无症状病例之间可能会复发。只有当参数 R∗>1 时,才会出现由接触率驱动的传播动态,这通常发生在直接传播或病媒传播的疾病中,但由于它取决于环境参数,因此与基本繁殖数量并不完全对应。在这种情况下,R∗∗ 存在的前向临界分岔只是外部污染流入脱落率与环境清除率之比。R∗ 描述了对 I-(急性)型感染以外的感染类别的传播强度。该模型中出现的流行病爆发条件和 R∗ 的结构都是流行病状态存在的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple endemic equilibria in an environmentally-transmitted disease with three disease stages

We construct, analyze and interpret a mathematical model for an environmental transmitted disease characterized for the existence of three disease stages: acute, severe and asymptomatic. Besides, we consider that severe and asymptomatic cases may present relapse between them. Transmission dynamics driven by the contact rates only occurs when a parameter R>1, as normally occur in directly-transmitted or vector-transmitted diseases, but it will not adequately correspond to a basic reproductive number as it depends on environmental parameters. In this case, the forward transcritical bifurcation that exists for R<1, becomes a backward bifurcation, producing multiple steady-states, a hysteresis effect and dependence on initial conditions. A threshold parameter for an epidemic outbreak, independent of R is only the ratio of the external contamination inflow shedding rate to the environmental clearance rate. R describes the strength of the transmission to infectious classes other than the I-(acute) type infections. The epidemic outbreak conditions and the structure of R appearing in this model are both responsible for the existence of endemic states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信