用于亚微瓦稳健型可穿戴传感技术的 10 通道、120 nW/通道可重构电容数字转换器。

Omar Faruqe;Daehyun Lee;Natalie B. Ownby;Benton H. Calhoun
{"title":"用于亚微瓦稳健型可穿戴传感技术的 10 通道、120 nW/通道可重构电容数字转换器。","authors":"Omar Faruqe;Daehyun Lee;Natalie B. Ownby;Benton H. Calhoun","doi":"10.1109/TBCAS.2024.3420871","DOIUrl":null,"url":null,"abstract":"This paper presents a 10-channel, 120 nW/channel, reconfigurable capacitance-to-digital converter (CDC) enabling sub-\n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nW wearable sensing applications. The proposed multi-channel architecture supports 10 channels with a shared reconfigurable 6-bit differential analog-to-digital converter (ADC). The reconfigurable nature of the CDC enables adaptive sensing range and sensing speed based on the target application. Furthermore, the architecture performs both on/off-chip parasitic correction and baseline calibration to measure the change in capacitance (\n<inline-formula><tex-math>$\\mathbf{\\Delta C}$</tex-math></inline-formula>\n), excluding baseline and parasitic capacitances. The experimental results show the measurement range of \n<inline-formula><tex-math>$\\mathbf{\\Delta C}$</tex-math></inline-formula>\n are 5.34 pF for 1x sensitivity and 1.8 pF for 3x sensitivity respectively. The capacitive divider-based architecture excludes power-hungry operational trans-impedance amplifiers for capacitance to voltage conversion, and the architecture supports programmable channel access to activate or deactivate each channel independently. The random interrupt protection logic avoids any broken sample or data error in a sampling window. Additionally, the channel monitoring logic helps keep track of specific channel information. The measured silicon result shows a total power consumption of 1.2 \n<inline-formula><tex-math>$\\mathbf{\\mu}$</tex-math></inline-formula>\nW for 1.6 kHz sampling frequency when driven by a 32 kHz clock, which is 8.6x less than prior works. The CDC is also tested with DMMP (dimethyl-methylphosphonate) gas sensor in gas chromatography (GC). Implemented in 65 nm CMOS process, the 10-channel CDC occupies 0.251 \n<inline-formula><tex-math>$\\mathbf{mm^{2}}$</tex-math></inline-formula>\n of active area (0.0251 \n<inline-formula><tex-math>$\\mathbf{mm^{2}}$</tex-math></inline-formula>\n/Ch).","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 4","pages":"849-860"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 10-Channel, 120 nW/Channel, Reconfigurable Capacitance-to-Digital Converter for Sub-$\\\\mu$W Robust Wearable Sensing\",\"authors\":\"Omar Faruqe;Daehyun Lee;Natalie B. Ownby;Benton H. Calhoun\",\"doi\":\"10.1109/TBCAS.2024.3420871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 10-channel, 120 nW/channel, reconfigurable capacitance-to-digital converter (CDC) enabling sub-\\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nW wearable sensing applications. The proposed multi-channel architecture supports 10 channels with a shared reconfigurable 6-bit differential analog-to-digital converter (ADC). The reconfigurable nature of the CDC enables adaptive sensing range and sensing speed based on the target application. Furthermore, the architecture performs both on/off-chip parasitic correction and baseline calibration to measure the change in capacitance (\\n<inline-formula><tex-math>$\\\\mathbf{\\\\Delta C}$</tex-math></inline-formula>\\n), excluding baseline and parasitic capacitances. The experimental results show the measurement range of \\n<inline-formula><tex-math>$\\\\mathbf{\\\\Delta C}$</tex-math></inline-formula>\\n are 5.34 pF for 1x sensitivity and 1.8 pF for 3x sensitivity respectively. The capacitive divider-based architecture excludes power-hungry operational trans-impedance amplifiers for capacitance to voltage conversion, and the architecture supports programmable channel access to activate or deactivate each channel independently. The random interrupt protection logic avoids any broken sample or data error in a sampling window. Additionally, the channel monitoring logic helps keep track of specific channel information. The measured silicon result shows a total power consumption of 1.2 \\n<inline-formula><tex-math>$\\\\mathbf{\\\\mu}$</tex-math></inline-formula>\\nW for 1.6 kHz sampling frequency when driven by a 32 kHz clock, which is 8.6x less than prior works. The CDC is also tested with DMMP (dimethyl-methylphosphonate) gas sensor in gas chromatography (GC). Implemented in 65 nm CMOS process, the 10-channel CDC occupies 0.251 \\n<inline-formula><tex-math>$\\\\mathbf{mm^{2}}$</tex-math></inline-formula>\\n of active area (0.0251 \\n<inline-formula><tex-math>$\\\\mathbf{mm^{2}}$</tex-math></inline-formula>\\n/Ch).\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"18 4\",\"pages\":\"849-860\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579495/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579495/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种 10 通道、120 nW/通道的可重构电容数字转换器(CDC),可实现亚微瓦级的可穿戴传感应用。所提出的多通道架构支持 10 个通道,共享一个可重新配置的 6 位差分模数转换器 (ADC)。CDC 的可重构特性可根据目标应用实现自适应传感范围和传感速度。此外,该架构还执行片上/片外寄生校正和基线校准,以测量电容变化(ΔC),不包括基线电容和寄生电容。实验结果表明,1 倍灵敏度和 3 倍灵敏度的 ΔC 测量范围分别为 5.34 pF 和 1.8 pF。基于电容分压器的架构排除了将电容转换为电压的高功耗运算跨阻放大器,该架构支持可编程通道访问,可独立激活或停用每个通道。随机中断保护逻辑可避免采样窗口中出现任何采样中断或数据错误。此外,通道监控逻辑有助于跟踪特定通道信息。硅测量结果表明,在 32 kHz 时钟驱动下,1.6 kHz 采样频率的总功耗为 1.2 μW,比以前的产品降低了 8.6 倍。CDC 还在气相色谱仪 (GC) 中与 DMMP(二甲基甲基膦酸盐)气体传感器进行了测试。10 通道 CDC 采用 65 纳米 CMOS 工艺实现,占地面积为 0.251 平方毫米(0.0251 平方毫米/时)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 10-Channel, 120 nW/Channel, Reconfigurable Capacitance-to-Digital Converter for Sub-$\mu$W Robust Wearable Sensing
This paper presents a 10-channel, 120 nW/channel, reconfigurable capacitance-to-digital converter (CDC) enabling sub- $\mu$ W wearable sensing applications. The proposed multi-channel architecture supports 10 channels with a shared reconfigurable 6-bit differential analog-to-digital converter (ADC). The reconfigurable nature of the CDC enables adaptive sensing range and sensing speed based on the target application. Furthermore, the architecture performs both on/off-chip parasitic correction and baseline calibration to measure the change in capacitance ( $\mathbf{\Delta C}$ ), excluding baseline and parasitic capacitances. The experimental results show the measurement range of $\mathbf{\Delta C}$ are 5.34 pF for 1x sensitivity and 1.8 pF for 3x sensitivity respectively. The capacitive divider-based architecture excludes power-hungry operational trans-impedance amplifiers for capacitance to voltage conversion, and the architecture supports programmable channel access to activate or deactivate each channel independently. The random interrupt protection logic avoids any broken sample or data error in a sampling window. Additionally, the channel monitoring logic helps keep track of specific channel information. The measured silicon result shows a total power consumption of 1.2 $\mathbf{\mu}$ W for 1.6 kHz sampling frequency when driven by a 32 kHz clock, which is 8.6x less than prior works. The CDC is also tested with DMMP (dimethyl-methylphosphonate) gas sensor in gas chromatography (GC). Implemented in 65 nm CMOS process, the 10-channel CDC occupies 0.251 $\mathbf{mm^{2}}$ of active area (0.0251 $\mathbf{mm^{2}}$ /Ch).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信