围绕肽基转移酶中心修改核糖体 RNA 的酶对转录的影响。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2024-01-01 Epub Date: 2024-07-01 DOI:10.1080/15476286.2024.2368305
Letian Bao, Josefine Liljeruhm, Rubén Crespo Blanco, Gerrit Brandis, Jaanus Remme, Anthony C Forster
{"title":"围绕肽基转移酶中心修改核糖体 RNA 的酶对转录的影响。","authors":"Letian Bao, Josefine Liljeruhm, Rubén Crespo Blanco, Gerrit Brandis, Jaanus Remme, Anthony C Forster","doi":"10.1080/15476286.2024.2368305","DOIUrl":null,"url":null,"abstract":"<p><p>Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on <i>Escherichia coli</i> growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. <i>In vitro</i> fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis <i>in vivo</i>, as judged by the kinetics of β-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg<sup>2+</sup>. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications <i>per se</i>, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Translational impacts of enzymes that modify ribosomal RNA around the peptidyl transferase centre.\",\"authors\":\"Letian Bao, Josefine Liljeruhm, Rubén Crespo Blanco, Gerrit Brandis, Jaanus Remme, Anthony C Forster\",\"doi\":\"10.1080/15476286.2024.2368305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on <i>Escherichia coli</i> growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. <i>In vitro</i> fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis <i>in vivo</i>, as judged by the kinetics of β-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg<sup>2+</sup>. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications <i>per se</i>, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2024.2368305\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2368305","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大型核糖体 RNA(rRNA)在转录后对重要功能区进行了大量修饰,但矛盾的是,单个修饰酶的敲除(KO)对大肠杆菌的生长影响很小。此外,我们最近构建了一种菌株,该菌株对 23S rRNA 肽基转移酶中心(PTC)"关键区域 "的五种修饰酶(RluC、RlmKL、RlmN、RlmM 和 RluE)进行了联合 KO。然而,我们对修饰酶 RluC 和 RlmE(而不是 RluE)的联合 KO 导致了有条件的致死(在 20°C 时)。虽然这两种多重 KO 株系的生长率都有特征,但这种缺陷的分子原因仍不清楚。在此,我们确定了这些菌株的生化缺陷。在 20 摄氏度和 37 摄氏度条件下,用从这两种菌株中纯化的核糖体进行体外快速动力学研究,结果发现,与直觉相反的是,转运速度减慢,而不是肽键形成或肽基释放速度减慢。根据β-半乳糖苷酶诱导的动力学判断,体内蛋白质合成的伸长率也减慢了。对于 5-KO 菌株,37°C 时最大的缺陷是 70S 核糖体组装,这可以从 5 mM Mg2+ 时核糖体蔗糖梯度图中的 50S 峰判断出来。从纯化的 5-KO rRNA 和核糖体蛋白中重组出的 50S 亚基支持 PTC 区域修饰本身而不是修饰酶在核糖体生物发生中的直接作用。这些结果澄清了神秘的 rRNA 修饰的重要性和作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Translational impacts of enzymes that modify ribosomal RNA around the peptidyl transferase centre.

Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of β-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信