Karim Fawzy El-Sayed, Elena Mahlandt, Kristina Schlicht, Kim Enthammer, Johannes Tölle, Juliane Wagner, Katharina Hartmann, Peter R Ebeling, Christian Graetz, Mathias Laudes, Christof E Dörfer, Dominik M Schulte
{"title":"氧化低密度脂蛋白与 IL-1ß/TNF-ɑ/INFɣ 对人类牙龈间充质干细胞特性的影响","authors":"Karim Fawzy El-Sayed, Elena Mahlandt, Kristina Schlicht, Kim Enthammer, Johannes Tölle, Juliane Wagner, Katharina Hartmann, Peter R Ebeling, Christian Graetz, Mathias Laudes, Christof E Dörfer, Dominik M Schulte","doi":"10.1111/jre.13319","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Oxidized low-density lipoprotein (oxLDL) is an important player in the course of metabolic inflammatory diseases. oxLDL was identified in the gingival crevicular fluid, denoting possible associations between oxLDL-induced inflammation and periodontal disease. The current investigation compared for the first-time direct effects of oxLDL to a cytokine cocktail of IL-1ß/TNF-ɑ/INF-γ on gingival mesenchymal stem cells' (G-MSCs) attributes.</p><p><strong>Methods: </strong>Human third passage G-MSCs, isolated from connective tissue biopsies (n = 5) and characterized, were stimulated in three groups over 7 days: control group, cytokine group (IL-1β[1 ng/mL], TNF-α[10 ng/mL], IFN-γ[100 ng/mL]), or oxLDL group (oxLDL [50 μg/mL]). Next Generation Sequencing and KEGG pathway enrichment analysis, stemness gene expression (NANOG/SOX2/OCT4A), cellular proliferation, colony-formation, multilinear potential, and altered intracellular pathways were investigated via histochemistry, next-generation sequencing, and RT-qPCR.</p><p><strong>Results: </strong>G-MSCs exhibited all mesenchymal stem cells' characteristics. oxLDL group and cytokine group displayed no disparities in their stemness markers (p > .05). Next-generation-sequencing revealed altered expression of the TXNIP gene in response to oxLDL treatment compared with controls (p = .04). Following an initial boosting for up to 5 days by inflammatory stimuli, over 14 day, cellular counts [median count ×10<sup>-5</sup> (Q25/Q75)] were utmost in control - [2.6607 (2.0804/4.5357)], followed by cytokine - [0.0433 (0.0026/1.4215)] and significantly lowered in the oxLDL group [0.0274 (0.0023/0.7290); p = .0047]. Osteogenic differentiation [median relative Ca<sup>2+</sup> content(Q25/Q75)] was significantly lower in cytokine - [0.0066 (0.0052/0.0105)] compared to oxLDL - [0.0144 (0.0108/0.0216)] (p = .0133), with no differences notable for chondrogenic and adipogenic differentiation (p > .05).</p><p><strong>Conclusions: </strong>Within the current investigation's limitations, in contrast to cytokine-mediated inflammation, G-MSCs appear to be minimally responsive to oxLDL-mediated metabolic inflammation, with little negative effect on their differentiation attributes and significantly reduced cellular proliferation.</p>","PeriodicalId":16715,"journal":{"name":"Journal of periodontal research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of oxidized LDL versus IL-1ß/TNF-ɑ/INFɣ on human gingival mesenchymal stem cells properties.\",\"authors\":\"Karim Fawzy El-Sayed, Elena Mahlandt, Kristina Schlicht, Kim Enthammer, Johannes Tölle, Juliane Wagner, Katharina Hartmann, Peter R Ebeling, Christian Graetz, Mathias Laudes, Christof E Dörfer, Dominik M Schulte\",\"doi\":\"10.1111/jre.13319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Oxidized low-density lipoprotein (oxLDL) is an important player in the course of metabolic inflammatory diseases. oxLDL was identified in the gingival crevicular fluid, denoting possible associations between oxLDL-induced inflammation and periodontal disease. The current investigation compared for the first-time direct effects of oxLDL to a cytokine cocktail of IL-1ß/TNF-ɑ/INF-γ on gingival mesenchymal stem cells' (G-MSCs) attributes.</p><p><strong>Methods: </strong>Human third passage G-MSCs, isolated from connective tissue biopsies (n = 5) and characterized, were stimulated in three groups over 7 days: control group, cytokine group (IL-1β[1 ng/mL], TNF-α[10 ng/mL], IFN-γ[100 ng/mL]), or oxLDL group (oxLDL [50 μg/mL]). Next Generation Sequencing and KEGG pathway enrichment analysis, stemness gene expression (NANOG/SOX2/OCT4A), cellular proliferation, colony-formation, multilinear potential, and altered intracellular pathways were investigated via histochemistry, next-generation sequencing, and RT-qPCR.</p><p><strong>Results: </strong>G-MSCs exhibited all mesenchymal stem cells' characteristics. oxLDL group and cytokine group displayed no disparities in their stemness markers (p > .05). Next-generation-sequencing revealed altered expression of the TXNIP gene in response to oxLDL treatment compared with controls (p = .04). Following an initial boosting for up to 5 days by inflammatory stimuli, over 14 day, cellular counts [median count ×10<sup>-5</sup> (Q25/Q75)] were utmost in control - [2.6607 (2.0804/4.5357)], followed by cytokine - [0.0433 (0.0026/1.4215)] and significantly lowered in the oxLDL group [0.0274 (0.0023/0.7290); p = .0047]. Osteogenic differentiation [median relative Ca<sup>2+</sup> content(Q25/Q75)] was significantly lower in cytokine - [0.0066 (0.0052/0.0105)] compared to oxLDL - [0.0144 (0.0108/0.0216)] (p = .0133), with no differences notable for chondrogenic and adipogenic differentiation (p > .05).</p><p><strong>Conclusions: </strong>Within the current investigation's limitations, in contrast to cytokine-mediated inflammation, G-MSCs appear to be minimally responsive to oxLDL-mediated metabolic inflammation, with little negative effect on their differentiation attributes and significantly reduced cellular proliferation.</p>\",\"PeriodicalId\":16715,\"journal\":{\"name\":\"Journal of periodontal research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of periodontal research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jre.13319\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of periodontal research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jre.13319","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Effects of oxidized LDL versus IL-1ß/TNF-ɑ/INFɣ on human gingival mesenchymal stem cells properties.
Aims: Oxidized low-density lipoprotein (oxLDL) is an important player in the course of metabolic inflammatory diseases. oxLDL was identified in the gingival crevicular fluid, denoting possible associations between oxLDL-induced inflammation and periodontal disease. The current investigation compared for the first-time direct effects of oxLDL to a cytokine cocktail of IL-1ß/TNF-ɑ/INF-γ on gingival mesenchymal stem cells' (G-MSCs) attributes.
Methods: Human third passage G-MSCs, isolated from connective tissue biopsies (n = 5) and characterized, were stimulated in three groups over 7 days: control group, cytokine group (IL-1β[1 ng/mL], TNF-α[10 ng/mL], IFN-γ[100 ng/mL]), or oxLDL group (oxLDL [50 μg/mL]). Next Generation Sequencing and KEGG pathway enrichment analysis, stemness gene expression (NANOG/SOX2/OCT4A), cellular proliferation, colony-formation, multilinear potential, and altered intracellular pathways were investigated via histochemistry, next-generation sequencing, and RT-qPCR.
Results: G-MSCs exhibited all mesenchymal stem cells' characteristics. oxLDL group and cytokine group displayed no disparities in their stemness markers (p > .05). Next-generation-sequencing revealed altered expression of the TXNIP gene in response to oxLDL treatment compared with controls (p = .04). Following an initial boosting for up to 5 days by inflammatory stimuli, over 14 day, cellular counts [median count ×10-5 (Q25/Q75)] were utmost in control - [2.6607 (2.0804/4.5357)], followed by cytokine - [0.0433 (0.0026/1.4215)] and significantly lowered in the oxLDL group [0.0274 (0.0023/0.7290); p = .0047]. Osteogenic differentiation [median relative Ca2+ content(Q25/Q75)] was significantly lower in cytokine - [0.0066 (0.0052/0.0105)] compared to oxLDL - [0.0144 (0.0108/0.0216)] (p = .0133), with no differences notable for chondrogenic and adipogenic differentiation (p > .05).
Conclusions: Within the current investigation's limitations, in contrast to cytokine-mediated inflammation, G-MSCs appear to be minimally responsive to oxLDL-mediated metabolic inflammation, with little negative effect on their differentiation attributes and significantly reduced cellular proliferation.
期刊介绍:
The Journal of Periodontal Research is an international research periodical the purpose of which is to publish original clinical and basic investigations and review articles concerned with every aspect of periodontology and related sciences. Brief communications (1-3 journal pages) are also accepted and a special effort is made to ensure their rapid publication. Reports of scientific meetings in periodontology and related fields are also published.
One volume of six issues is published annually.