{"title":"将多西他赛和厄洛替尼结合在一起的功能化固体脂质纳米粒子可协同提高三阴性乳腺癌的抗癌疗效。","authors":"Aiswarya Chaudhuri, Dulla Naveen Kumar, Dinesh Kumar, Ashish Kumar Agrawal","doi":"10.1016/j.ejpb.2024.114386","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of the study was to fabricate folic acid functionalized docetaxel (DOC)/erlotinib (ERL)-loaded solid lipid nanoparticles (SLNs) to synergistically increase the anticancer activity against triple-negative breast cancer. DOC/ERL-SLNs were prepared by the high shear homogenization – ultrasound dispersion method (0.1 % w/v for DOC, and 0.3 %w/v for ERL) and optimized using Plackett Burman Design (PBD) followed by Box Behnken Design (BBD). The optimized SLNs demonstrated particle size < 200 nm, PDI < 0.35, and negative zeta potential with entrapment and loading efficiency of ∼80 and ∼4 %, respectively. The SLNs and folic acid functionalized SLNs (FA-SLNs) showed sustained release for both drugs, followed by Higuchi and Korsemeyer-Peppas drug release models, respectively. Further, the <em>in vitro</em> pH-stat lipolysis model demonstrated an approximately 3-fold increase in the bioaccessibility of drugs from SLNs compared to suspension. The TEM images revealed the spherical morphology of the SLNs. DOC/ERL loaded SLNs showed dose- and time-dependent cytotoxicity and exhibited a synergism at a molar ratio of 1:3 in TNBC with a combination index of 0.35 and 0.37, respectively. FA-DOC/ERL-SLNs showed enhanced anticancer activity as evidenced by MMP and ROS assay and further inhibited the colony-forming ability and the migration capacity of TNBC cells. Conclusively, the study has shown that SLNs are encouraging systems to improve the pharmaceutical attributes of poorly bioavailable drugs.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionalized solid lipid nanoparticles combining docetaxel and erlotinib synergize the anticancer efficacy against triple-negative breast cancer\",\"authors\":\"Aiswarya Chaudhuri, Dulla Naveen Kumar, Dinesh Kumar, Ashish Kumar Agrawal\",\"doi\":\"10.1016/j.ejpb.2024.114386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of the study was to fabricate folic acid functionalized docetaxel (DOC)/erlotinib (ERL)-loaded solid lipid nanoparticles (SLNs) to synergistically increase the anticancer activity against triple-negative breast cancer. DOC/ERL-SLNs were prepared by the high shear homogenization – ultrasound dispersion method (0.1 % w/v for DOC, and 0.3 %w/v for ERL) and optimized using Plackett Burman Design (PBD) followed by Box Behnken Design (BBD). The optimized SLNs demonstrated particle size < 200 nm, PDI < 0.35, and negative zeta potential with entrapment and loading efficiency of ∼80 and ∼4 %, respectively. The SLNs and folic acid functionalized SLNs (FA-SLNs) showed sustained release for both drugs, followed by Higuchi and Korsemeyer-Peppas drug release models, respectively. Further, the <em>in vitro</em> pH-stat lipolysis model demonstrated an approximately 3-fold increase in the bioaccessibility of drugs from SLNs compared to suspension. The TEM images revealed the spherical morphology of the SLNs. DOC/ERL loaded SLNs showed dose- and time-dependent cytotoxicity and exhibited a synergism at a molar ratio of 1:3 in TNBC with a combination index of 0.35 and 0.37, respectively. FA-DOC/ERL-SLNs showed enhanced anticancer activity as evidenced by MMP and ROS assay and further inhibited the colony-forming ability and the migration capacity of TNBC cells. Conclusively, the study has shown that SLNs are encouraging systems to improve the pharmaceutical attributes of poorly bioavailable drugs.</p></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124002121\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124002121","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Functionalized solid lipid nanoparticles combining docetaxel and erlotinib synergize the anticancer efficacy against triple-negative breast cancer
The goal of the study was to fabricate folic acid functionalized docetaxel (DOC)/erlotinib (ERL)-loaded solid lipid nanoparticles (SLNs) to synergistically increase the anticancer activity against triple-negative breast cancer. DOC/ERL-SLNs were prepared by the high shear homogenization – ultrasound dispersion method (0.1 % w/v for DOC, and 0.3 %w/v for ERL) and optimized using Plackett Burman Design (PBD) followed by Box Behnken Design (BBD). The optimized SLNs demonstrated particle size < 200 nm, PDI < 0.35, and negative zeta potential with entrapment and loading efficiency of ∼80 and ∼4 %, respectively. The SLNs and folic acid functionalized SLNs (FA-SLNs) showed sustained release for both drugs, followed by Higuchi and Korsemeyer-Peppas drug release models, respectively. Further, the in vitro pH-stat lipolysis model demonstrated an approximately 3-fold increase in the bioaccessibility of drugs from SLNs compared to suspension. The TEM images revealed the spherical morphology of the SLNs. DOC/ERL loaded SLNs showed dose- and time-dependent cytotoxicity and exhibited a synergism at a molar ratio of 1:3 in TNBC with a combination index of 0.35 and 0.37, respectively. FA-DOC/ERL-SLNs showed enhanced anticancer activity as evidenced by MMP and ROS assay and further inhibited the colony-forming ability and the migration capacity of TNBC cells. Conclusively, the study has shown that SLNs are encouraging systems to improve the pharmaceutical attributes of poorly bioavailable drugs.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.