Rafey Feroze, Puneet Kang, Luis Augusto Palma Dallan, Navya Akula, Jason Galo, Sung-Han Yoon, Anene Ukaigwe, Steven J Filby, Cristian Baeza, Marc Pelletier, Gregory Rushing, Sanjay Rajagopalan, Sadeer Al-Kindi, Imran Rashid, Guilherme F Attizzani
{"title":"心肌细胞外体积分数升高与经导管主动脉瓣置换术后传导通路缺陷的发生有关。","authors":"Rafey Feroze, Puneet Kang, Luis Augusto Palma Dallan, Navya Akula, Jason Galo, Sung-Han Yoon, Anene Ukaigwe, Steven J Filby, Cristian Baeza, Marc Pelletier, Gregory Rushing, Sanjay Rajagopalan, Sadeer Al-Kindi, Imran Rashid, Guilherme F Attizzani","doi":"10.1002/ccd.31136","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transcatheter aortic valve replacement (TAVR) has become an established method of aortic stenosis treatment but suffers from the risk of heart block and pacemaker requirement. Risk stratification for patients who may develop heart block remains imperfect. Simultaneously, myocardial fibrosis as measured by cardiac magnetic resonance imaging (CMR) has been demonstrated as a prognostic indicator of ventricular recovery and mortality following TAVR. However, the association of CMR-based measures of myocardial fibrosis with post-TAVR conduction disturbances has not yet been explored.</p><p><strong>Aims: </strong>We evaluated whether myocardial fibrosis, as measured by late gadolinium enhancement and extracellular volume (ECV) from CMR would be associated with new conduction abnormalities following TAVR.</p><p><strong>Methods: </strong>One hundred seventy patients who underwent CMR within 2 months before TAVR were retrospectively reviewed. Septal late gadolinium enhancement (LGE) and ECV measurements were made as surrogates for replacement and interstitial fibrosis respectively. New conduction abnormalities were defined by the presence of transient or permanent atrioventricular block, new bundle branch blocks, and need for permanent pacemaker. Association of myocardial fibrosis and new conduction derangements were tested using receiver operator curve (ROC) and regression analysis in patients with and without pre-existing conduction issues.</p><p><strong>Results: </strong>Forty-six (27.1%) patients developed post-TAVR conduction deficits. ECV was significantly higher among patients who experienced new conduction defects (26.2 ± 3.45% vs. 24.7% ± 4.15%, p value: 0.020). A greater fraction of patients that had new conduction defects had an elevated ECV of ≥26% (54.3% vs. 36.3%, p value: 0.026). ECV ≥ 26% was independently associated with the development of new conduction defects (odds ratio [OR]: 2.364, p value: 0.030). ROC analysis revealed a significant association of ECV with new conduction defects with an area under the receiver operating characteristic curve (AUC) of 0.632 (95% confidence interval: 0.555-0.705, p value: 0.005). The combination of prior right bundle branch block (RBBB) and ECV revealed a greater AUC of 0.779 (0.709-0.839, p value: <0.001) than RBBB alone (Delong p value: 0.049). No association of LGE/ECV with new conduction defects was observed among patients with pre-existing conduction disease. Among patients without baseline conduction disease, ECV was independently associated with the development of new conduction deficits (OR: 3.685, p value: 0.008).</p><p><strong>Conclusion: </strong>The present study explored the association of myocardial fibrosis, as measured by LGE and ECV with conduction deficits post-TAVR. Our results demonstrate an association of ECV, and thereby interstitial myocardial fibrosis, with new conduction derangement post-TAVR and introduce ECV as a potentially new risk stratification tool to identify patients at higher risk for needing post-TAVR surveillance and/or permanent pacemaker.</p>","PeriodicalId":9650,"journal":{"name":"Catheterization and Cardiovascular Interventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevated myocardial extracellular volume fraction is associated with the development of conduction pathway defects following transcatheter aortic valve replacement.\",\"authors\":\"Rafey Feroze, Puneet Kang, Luis Augusto Palma Dallan, Navya Akula, Jason Galo, Sung-Han Yoon, Anene Ukaigwe, Steven J Filby, Cristian Baeza, Marc Pelletier, Gregory Rushing, Sanjay Rajagopalan, Sadeer Al-Kindi, Imran Rashid, Guilherme F Attizzani\",\"doi\":\"10.1002/ccd.31136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Transcatheter aortic valve replacement (TAVR) has become an established method of aortic stenosis treatment but suffers from the risk of heart block and pacemaker requirement. Risk stratification for patients who may develop heart block remains imperfect. Simultaneously, myocardial fibrosis as measured by cardiac magnetic resonance imaging (CMR) has been demonstrated as a prognostic indicator of ventricular recovery and mortality following TAVR. However, the association of CMR-based measures of myocardial fibrosis with post-TAVR conduction disturbances has not yet been explored.</p><p><strong>Aims: </strong>We evaluated whether myocardial fibrosis, as measured by late gadolinium enhancement and extracellular volume (ECV) from CMR would be associated with new conduction abnormalities following TAVR.</p><p><strong>Methods: </strong>One hundred seventy patients who underwent CMR within 2 months before TAVR were retrospectively reviewed. Septal late gadolinium enhancement (LGE) and ECV measurements were made as surrogates for replacement and interstitial fibrosis respectively. New conduction abnormalities were defined by the presence of transient or permanent atrioventricular block, new bundle branch blocks, and need for permanent pacemaker. Association of myocardial fibrosis and new conduction derangements were tested using receiver operator curve (ROC) and regression analysis in patients with and without pre-existing conduction issues.</p><p><strong>Results: </strong>Forty-six (27.1%) patients developed post-TAVR conduction deficits. ECV was significantly higher among patients who experienced new conduction defects (26.2 ± 3.45% vs. 24.7% ± 4.15%, p value: 0.020). A greater fraction of patients that had new conduction defects had an elevated ECV of ≥26% (54.3% vs. 36.3%, p value: 0.026). ECV ≥ 26% was independently associated with the development of new conduction defects (odds ratio [OR]: 2.364, p value: 0.030). ROC analysis revealed a significant association of ECV with new conduction defects with an area under the receiver operating characteristic curve (AUC) of 0.632 (95% confidence interval: 0.555-0.705, p value: 0.005). The combination of prior right bundle branch block (RBBB) and ECV revealed a greater AUC of 0.779 (0.709-0.839, p value: <0.001) than RBBB alone (Delong p value: 0.049). No association of LGE/ECV with new conduction defects was observed among patients with pre-existing conduction disease. Among patients without baseline conduction disease, ECV was independently associated with the development of new conduction deficits (OR: 3.685, p value: 0.008).</p><p><strong>Conclusion: </strong>The present study explored the association of myocardial fibrosis, as measured by LGE and ECV with conduction deficits post-TAVR. Our results demonstrate an association of ECV, and thereby interstitial myocardial fibrosis, with new conduction derangement post-TAVR and introduce ECV as a potentially new risk stratification tool to identify patients at higher risk for needing post-TAVR surveillance and/or permanent pacemaker.</p>\",\"PeriodicalId\":9650,\"journal\":{\"name\":\"Catheterization and Cardiovascular Interventions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catheterization and Cardiovascular Interventions\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ccd.31136\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catheterization and Cardiovascular Interventions","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ccd.31136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Elevated myocardial extracellular volume fraction is associated with the development of conduction pathway defects following transcatheter aortic valve replacement.
Background: Transcatheter aortic valve replacement (TAVR) has become an established method of aortic stenosis treatment but suffers from the risk of heart block and pacemaker requirement. Risk stratification for patients who may develop heart block remains imperfect. Simultaneously, myocardial fibrosis as measured by cardiac magnetic resonance imaging (CMR) has been demonstrated as a prognostic indicator of ventricular recovery and mortality following TAVR. However, the association of CMR-based measures of myocardial fibrosis with post-TAVR conduction disturbances has not yet been explored.
Aims: We evaluated whether myocardial fibrosis, as measured by late gadolinium enhancement and extracellular volume (ECV) from CMR would be associated with new conduction abnormalities following TAVR.
Methods: One hundred seventy patients who underwent CMR within 2 months before TAVR were retrospectively reviewed. Septal late gadolinium enhancement (LGE) and ECV measurements were made as surrogates for replacement and interstitial fibrosis respectively. New conduction abnormalities were defined by the presence of transient or permanent atrioventricular block, new bundle branch blocks, and need for permanent pacemaker. Association of myocardial fibrosis and new conduction derangements were tested using receiver operator curve (ROC) and regression analysis in patients with and without pre-existing conduction issues.
Results: Forty-six (27.1%) patients developed post-TAVR conduction deficits. ECV was significantly higher among patients who experienced new conduction defects (26.2 ± 3.45% vs. 24.7% ± 4.15%, p value: 0.020). A greater fraction of patients that had new conduction defects had an elevated ECV of ≥26% (54.3% vs. 36.3%, p value: 0.026). ECV ≥ 26% was independently associated with the development of new conduction defects (odds ratio [OR]: 2.364, p value: 0.030). ROC analysis revealed a significant association of ECV with new conduction defects with an area under the receiver operating characteristic curve (AUC) of 0.632 (95% confidence interval: 0.555-0.705, p value: 0.005). The combination of prior right bundle branch block (RBBB) and ECV revealed a greater AUC of 0.779 (0.709-0.839, p value: <0.001) than RBBB alone (Delong p value: 0.049). No association of LGE/ECV with new conduction defects was observed among patients with pre-existing conduction disease. Among patients without baseline conduction disease, ECV was independently associated with the development of new conduction deficits (OR: 3.685, p value: 0.008).
Conclusion: The present study explored the association of myocardial fibrosis, as measured by LGE and ECV with conduction deficits post-TAVR. Our results demonstrate an association of ECV, and thereby interstitial myocardial fibrosis, with new conduction derangement post-TAVR and introduce ECV as a potentially new risk stratification tool to identify patients at higher risk for needing post-TAVR surveillance and/or permanent pacemaker.
期刊介绍:
Catheterization and Cardiovascular Interventions is an international journal covering the broad field of cardiovascular diseases. Subject material includes basic and clinical information that is derived from or related to invasive and interventional coronary or peripheral vascular techniques. The journal focuses on material that will be of immediate practical value to physicians providing patient care in the clinical laboratory setting. To accomplish this, the journal publishes Preliminary Reports and Work In Progress articles that complement the traditional Original Studies, Case Reports, and Comprehensive Reviews. Perspective and insight concerning controversial subjects and evolving technologies are provided regularly through Editorial Commentaries furnished by members of the Editorial Board and other experts. Articles are subject to double-blind peer review and complete editorial evaluation prior to any decision regarding acceptability.