Deeppal, Kishan Kumar Raj, Tapas Chowdhury, Alavala Umarajashekhar, Ravindra Soni
{"title":"提高鱼腥色杆菌 AMA-5 产碱量及其纺织品染色能力的筛选和表征。","authors":"Deeppal, Kishan Kumar Raj, Tapas Chowdhury, Alavala Umarajashekhar, Ravindra Soni","doi":"10.1002/bab.2629","DOIUrl":null,"url":null,"abstract":"<p><p>A violet pigment (violacein) bacterial isolate AMA-5 was isolated from soil samples collected from Achanakmar Biosphere Reserve, Mungeli district, Chhattisgarh, India. The yield of biocolor from this isolate was screened in minimal medium after 48 h of incubation at 37°C ± 2°C temperature. The violet pigment was extracted in ethanol. It was also observed that ammonium chloride (2.5 g/1000 mL) as a nitrogen source is the best to enhance AMA-5 pigment production among other nitrogen sources (ammonium sulfate, tryptophan, ammonium iron sulfate, and peptone). The Sanger sequencing of 16S rDNA of strain AMA-5 showed similarity with Chromobacterium piscinae. From the available literature and research articles, it was assumed that this violet color pigment is violacein. It was further verified by conducting high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (<sup>1</sup>H-NMR) analysis. The violet biocolor that extracted was used in cotton and polyester fabric dyeing. After the fabrics treated with sodium chloride as a mordant were completely dried, it was identified that the color was solidifying. Overall study showed that C. piscinae AMA-5 has good potential for production of violacein, which is the most important industrial natural dye used to add color to textile products.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening and characterization of Chromobacterium piscinae AMA-5 for enhanced production of violacein and its ability of textile dyeing.\",\"authors\":\"Deeppal, Kishan Kumar Raj, Tapas Chowdhury, Alavala Umarajashekhar, Ravindra Soni\",\"doi\":\"10.1002/bab.2629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A violet pigment (violacein) bacterial isolate AMA-5 was isolated from soil samples collected from Achanakmar Biosphere Reserve, Mungeli district, Chhattisgarh, India. The yield of biocolor from this isolate was screened in minimal medium after 48 h of incubation at 37°C ± 2°C temperature. The violet pigment was extracted in ethanol. It was also observed that ammonium chloride (2.5 g/1000 mL) as a nitrogen source is the best to enhance AMA-5 pigment production among other nitrogen sources (ammonium sulfate, tryptophan, ammonium iron sulfate, and peptone). The Sanger sequencing of 16S rDNA of strain AMA-5 showed similarity with Chromobacterium piscinae. From the available literature and research articles, it was assumed that this violet color pigment is violacein. It was further verified by conducting high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (<sup>1</sup>H-NMR) analysis. The violet biocolor that extracted was used in cotton and polyester fabric dyeing. After the fabrics treated with sodium chloride as a mordant were completely dried, it was identified that the color was solidifying. Overall study showed that C. piscinae AMA-5 has good potential for production of violacein, which is the most important industrial natural dye used to add color to textile products.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.2629\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2629","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Screening and characterization of Chromobacterium piscinae AMA-5 for enhanced production of violacein and its ability of textile dyeing.
A violet pigment (violacein) bacterial isolate AMA-5 was isolated from soil samples collected from Achanakmar Biosphere Reserve, Mungeli district, Chhattisgarh, India. The yield of biocolor from this isolate was screened in minimal medium after 48 h of incubation at 37°C ± 2°C temperature. The violet pigment was extracted in ethanol. It was also observed that ammonium chloride (2.5 g/1000 mL) as a nitrogen source is the best to enhance AMA-5 pigment production among other nitrogen sources (ammonium sulfate, tryptophan, ammonium iron sulfate, and peptone). The Sanger sequencing of 16S rDNA of strain AMA-5 showed similarity with Chromobacterium piscinae. From the available literature and research articles, it was assumed that this violet color pigment is violacein. It was further verified by conducting high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H-NMR) analysis. The violet biocolor that extracted was used in cotton and polyester fabric dyeing. After the fabrics treated with sodium chloride as a mordant were completely dried, it was identified that the color was solidifying. Overall study showed that C. piscinae AMA-5 has good potential for production of violacein, which is the most important industrial natural dye used to add color to textile products.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.