Lin Zhang , Haiping Xiang , Feng Wang , Zepeng Chen , Mo Shen , Jiani Ma , Hui Liu , Hongdang Zheng
{"title":"scGAAC:用于聚类单细胞 RNA 序列数据的图注意自动编码器。","authors":"Lin Zhang , Haiping Xiang , Feng Wang , Zepeng Chen , Mo Shen , Jiani Ma , Hui Liu , Hongdang Zheng","doi":"10.1016/j.ymeth.2024.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>Single-cell RNA-sequencing (scRNA-seq) enables the investigation of intricate mechanisms governing cell heterogeneity and diversity. Clustering analysis remains a pivotal tool in scRNA-seq for discerning cell types. However, persistent challenges arise from noise, high dimensionality, and dropout in single-cell data. Despite the proliferation of scRNA-seq clustering methods, these often focus on extracting representations from individual cell expression data, neglecting potential intercellular relationships. To overcome this limitation, we introduce scGAAC, a novel clustering method based on an attention-based graph convolutional autoencoder. By leveraging structural information between cells through a graph attention autoencoder, scGAAC uncovers latent relationships while extracting representation information from single-cell gene expression patterns. An attention fusion module amalgamates the learned features of the graph attention autoencoder and the autoencoder through attention weights. Ultimately, a self-supervised learning policy guides model optimization. scGAAC, a hypothesis-free framework, performs better on four real scRNA-seq datasets than most state-of-the-art methods. The scGAAC implementation is publicly available on Github at: <span>https://github.com/labiip/scGAAC</span><svg><path></path></svg>.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"229 ","pages":"Pages 115-124"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data\",\"authors\":\"Lin Zhang , Haiping Xiang , Feng Wang , Zepeng Chen , Mo Shen , Jiani Ma , Hui Liu , Hongdang Zheng\",\"doi\":\"10.1016/j.ymeth.2024.06.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Single-cell RNA-sequencing (scRNA-seq) enables the investigation of intricate mechanisms governing cell heterogeneity and diversity. Clustering analysis remains a pivotal tool in scRNA-seq for discerning cell types. However, persistent challenges arise from noise, high dimensionality, and dropout in single-cell data. Despite the proliferation of scRNA-seq clustering methods, these often focus on extracting representations from individual cell expression data, neglecting potential intercellular relationships. To overcome this limitation, we introduce scGAAC, a novel clustering method based on an attention-based graph convolutional autoencoder. By leveraging structural information between cells through a graph attention autoencoder, scGAAC uncovers latent relationships while extracting representation information from single-cell gene expression patterns. An attention fusion module amalgamates the learned features of the graph attention autoencoder and the autoencoder through attention weights. Ultimately, a self-supervised learning policy guides model optimization. scGAAC, a hypothesis-free framework, performs better on four real scRNA-seq datasets than most state-of-the-art methods. The scGAAC implementation is publicly available on Github at: <span>https://github.com/labiip/scGAAC</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"229 \",\"pages\":\"Pages 115-124\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001609\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001609","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data
Single-cell RNA-sequencing (scRNA-seq) enables the investigation of intricate mechanisms governing cell heterogeneity and diversity. Clustering analysis remains a pivotal tool in scRNA-seq for discerning cell types. However, persistent challenges arise from noise, high dimensionality, and dropout in single-cell data. Despite the proliferation of scRNA-seq clustering methods, these often focus on extracting representations from individual cell expression data, neglecting potential intercellular relationships. To overcome this limitation, we introduce scGAAC, a novel clustering method based on an attention-based graph convolutional autoencoder. By leveraging structural information between cells through a graph attention autoencoder, scGAAC uncovers latent relationships while extracting representation information from single-cell gene expression patterns. An attention fusion module amalgamates the learned features of the graph attention autoencoder and the autoencoder through attention weights. Ultimately, a self-supervised learning policy guides model optimization. scGAAC, a hypothesis-free framework, performs better on four real scRNA-seq datasets than most state-of-the-art methods. The scGAAC implementation is publicly available on Github at: https://github.com/labiip/scGAAC.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.