掺杂二维卤化铅包晶石的光学研究:导带中拉什巴分裂分支的证据。

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-07-01 DOI:10.1021/acsnano.4c01525
Evan Lafalce, Rikard Bodin, Bryon W. Larson, Ji Hao, Md Azimul Haque, Uyen Huynh, Jeffrey L. Blackburn* and Zeev Valy Vardeny*, 
{"title":"掺杂二维卤化铅包晶石的光学研究:导带中拉什巴分裂分支的证据。","authors":"Evan Lafalce,&nbsp;Rikard Bodin,&nbsp;Bryon W. Larson,&nbsp;Ji Hao,&nbsp;Md Azimul Haque,&nbsp;Uyen Huynh,&nbsp;Jeffrey L. Blackburn* and Zeev Valy Vardeny*,&nbsp;","doi":"10.1021/acsnano.4c01525","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) hybrid organic/inorganic perovskites are an emerging materials class for optoelectronic and spintronic applications due to strong excitonic absorption and emission, large spin–orbit coupling, and Rashba spin-splitting effects. For many of the envisioned applications, tuning the majority charge carrier (electron or hole) concentration is desirable, but electronic doping of metal-halide perovskites has proven to be challenging. Here, we demonstrate electron injection into the lower-energy branch of the Rashba-split conduction band of 2D phenethylammonium lead iodide by means of n-type molecular doping at room temperature. The molecular dopant, benzyl viologen (BV), is shown to compensate adventitious p-type impurities and can lead to a tunable Fermi level above the conduction band minimum and increased conductivity in intrinsic samples. The doping-induced carrier concentration is monitored by the observation of free-carrier absorption and intraband optical transitions in the infrared spectral range. These optical measurements allow for an estimation of the Rashba splitting energy <i>E</i><sub>R</sub> ≈38 ± 4 meV. Photoinduced quantum beating measurements demonstrate that the excess electron density reduces the electron spin <i>g</i>-factor by ca. 6%. This work demonstrates controllable carrier concentrations in hybrid organic/inorganic perovskites and yields potential for room temperature spin control through the Rashba effect.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c01525","citationCount":"0","resultStr":"{\"title\":\"Optical Studies of Doped Two-Dimensional Lead Halide Perovskites: Evidence for Rashba-Split Branches in the Conduction Band\",\"authors\":\"Evan Lafalce,&nbsp;Rikard Bodin,&nbsp;Bryon W. Larson,&nbsp;Ji Hao,&nbsp;Md Azimul Haque,&nbsp;Uyen Huynh,&nbsp;Jeffrey L. Blackburn* and Zeev Valy Vardeny*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c01525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) hybrid organic/inorganic perovskites are an emerging materials class for optoelectronic and spintronic applications due to strong excitonic absorption and emission, large spin–orbit coupling, and Rashba spin-splitting effects. For many of the envisioned applications, tuning the majority charge carrier (electron or hole) concentration is desirable, but electronic doping of metal-halide perovskites has proven to be challenging. Here, we demonstrate electron injection into the lower-energy branch of the Rashba-split conduction band of 2D phenethylammonium lead iodide by means of n-type molecular doping at room temperature. The molecular dopant, benzyl viologen (BV), is shown to compensate adventitious p-type impurities and can lead to a tunable Fermi level above the conduction band minimum and increased conductivity in intrinsic samples. The doping-induced carrier concentration is monitored by the observation of free-carrier absorption and intraband optical transitions in the infrared spectral range. These optical measurements allow for an estimation of the Rashba splitting energy <i>E</i><sub>R</sub> ≈38 ± 4 meV. Photoinduced quantum beating measurements demonstrate that the excess electron density reduces the electron spin <i>g</i>-factor by ca. 6%. This work demonstrates controllable carrier concentrations in hybrid organic/inorganic perovskites and yields potential for room temperature spin control through the Rashba effect.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c01525\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c01525\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c01525","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)混合有机/无机包晶由于具有强激子吸收和发射、大自旋轨道耦合和拉什巴自旋分裂效应,成为光电和自旋电子应用的新兴材料类别。对于许多设想中的应用来说,调整多数电荷载流子(电子或空穴)浓度是理想的,但事实证明,金属卤化物包晶的电子掺杂具有挑战性。在这里,我们展示了通过在室温下进行 n 型分子掺杂,将电子注入二维苯乙基铵碘化铅的 Rashba 分裂导带低能分支的方法。研究表明,分子掺杂剂苄基紫精(BV)可以补偿偶然出现的 p 型杂质,从而使费米级高于导带最小值并提高本征样品的电导率。通过观察红外光谱范围内的自由载流子吸收和带内光学转变,可以监测掺杂诱导的载流子浓度。通过这些光学测量,可以估算出拉什巴分裂能量 ER ≈38 ± 4 meV。光诱导量子跳动测量结果表明,过量电子密度使电子自旋 g 因子降低了约 6%。这项工作证明了有机/无机混合包晶石中载流子浓度的可控性,以及通过拉什巴效应实现室温自旋控制的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optical Studies of Doped Two-Dimensional Lead Halide Perovskites: Evidence for Rashba-Split Branches in the Conduction Band

Optical Studies of Doped Two-Dimensional Lead Halide Perovskites: Evidence for Rashba-Split Branches in the Conduction Band

Optical Studies of Doped Two-Dimensional Lead Halide Perovskites: Evidence for Rashba-Split Branches in the Conduction Band

Two-dimensional (2D) hybrid organic/inorganic perovskites are an emerging materials class for optoelectronic and spintronic applications due to strong excitonic absorption and emission, large spin–orbit coupling, and Rashba spin-splitting effects. For many of the envisioned applications, tuning the majority charge carrier (electron or hole) concentration is desirable, but electronic doping of metal-halide perovskites has proven to be challenging. Here, we demonstrate electron injection into the lower-energy branch of the Rashba-split conduction band of 2D phenethylammonium lead iodide by means of n-type molecular doping at room temperature. The molecular dopant, benzyl viologen (BV), is shown to compensate adventitious p-type impurities and can lead to a tunable Fermi level above the conduction band minimum and increased conductivity in intrinsic samples. The doping-induced carrier concentration is monitored by the observation of free-carrier absorption and intraband optical transitions in the infrared spectral range. These optical measurements allow for an estimation of the Rashba splitting energy ER ≈38 ± 4 meV. Photoinduced quantum beating measurements demonstrate that the excess electron density reduces the electron spin g-factor by ca. 6%. This work demonstrates controllable carrier concentrations in hybrid organic/inorganic perovskites and yields potential for room temperature spin control through the Rashba effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信