主机气候模型对飞行物卷云有效辐射强迫估计值的影响

IF 5.2 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, Alexandru Rap
{"title":"主机气候模型对飞行物卷云有效辐射强迫估计值的影响","authors":"Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, Alexandru Rap","doi":"10.5194/egusphere-2024-1573","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Aviation is currently estimated to contribute ~3.5 % of the net anthropogenic effective radiative forcing (ERF) of Earth's atmosphere. The largest component of this forcing comes from contrail cirrus (also with a large associated uncertainty of ~70 %), estimated to be two times larger than the contribution from aviation CO<sub>2</sub> emissions. Here we implement the contrail parameterisation previously developed for the USA NCAR (National Center for Atmospheric Research) Community Atmosphere Model (CAM) in the UK Met Office Unified Model (UM). By using for the first time the same contrail parameterisation in two different host climate models, this work investigates the impact of key features of the host climate model on quantifying contrail cirrus radiative impacts. We find that differences in the background humidity (in particular ice supersaturation) in the two climate models lead to substantial differences in simulated contrail fractions, with UM values being two to three times as large as those from CAM. We also find contrasting responses in overall global cloud fraction due to air traffic, with contrails causing increases and decreases in total cloud fraction in the UM and in CAM, respectively. The different complexity of the two models’ cloud microphysics schemes (i.e. single and double-moment cloud schemes in the UM and CAM, respectively) results in significant differences in the simulated changes in cloud ice water content due to aviation. When accounting for the difference in cloud microphysics complexity, we estimate the contrail cirrus ERF of the year 2018 to be 40.8 mWm<sup>−2</sup> in the UM and 60.1 mWm<sup>−2</sup> in CAM. While these two estimates are not entirely independent, they indicate a substantial (i.e. factor of ~2) uncertainty in contrail cirrus ERF from differences in the microphysics and radiation schemes of the two host climate models. We also find a factor of 8 uncertainty in contrail cirrus ERF due to existing uncertainty in contrail cirrus optical depth. We suggest that future work on the contrail cirrus climate impact should focus on better representing the microphysical and radiative contrail characteristics in different climate models and on improved observational constraints.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":"31 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of host climate model on contrail cirrus effective radiative forcing estimates\",\"authors\":\"Weiyu Zhang, Kwinten Van Weverberg, Cyril J. Morcrette, Wuhu Feng, Kalli Furtado, Paul R. Field, Chih-Chieh Chen, Andrew Gettelman, Piers M. Forster, Daniel R. Marsh, Alexandru Rap\",\"doi\":\"10.5194/egusphere-2024-1573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Aviation is currently estimated to contribute ~3.5 % of the net anthropogenic effective radiative forcing (ERF) of Earth's atmosphere. The largest component of this forcing comes from contrail cirrus (also with a large associated uncertainty of ~70 %), estimated to be two times larger than the contribution from aviation CO<sub>2</sub> emissions. Here we implement the contrail parameterisation previously developed for the USA NCAR (National Center for Atmospheric Research) Community Atmosphere Model (CAM) in the UK Met Office Unified Model (UM). By using for the first time the same contrail parameterisation in two different host climate models, this work investigates the impact of key features of the host climate model on quantifying contrail cirrus radiative impacts. We find that differences in the background humidity (in particular ice supersaturation) in the two climate models lead to substantial differences in simulated contrail fractions, with UM values being two to three times as large as those from CAM. We also find contrasting responses in overall global cloud fraction due to air traffic, with contrails causing increases and decreases in total cloud fraction in the UM and in CAM, respectively. The different complexity of the two models’ cloud microphysics schemes (i.e. single and double-moment cloud schemes in the UM and CAM, respectively) results in significant differences in the simulated changes in cloud ice water content due to aviation. When accounting for the difference in cloud microphysics complexity, we estimate the contrail cirrus ERF of the year 2018 to be 40.8 mWm<sup>−2</sup> in the UM and 60.1 mWm<sup>−2</sup> in CAM. While these two estimates are not entirely independent, they indicate a substantial (i.e. factor of ~2) uncertainty in contrail cirrus ERF from differences in the microphysics and radiation schemes of the two host climate models. We also find a factor of 8 uncertainty in contrail cirrus ERF due to existing uncertainty in contrail cirrus optical depth. We suggest that future work on the contrail cirrus climate impact should focus on better representing the microphysical and radiative contrail characteristics in different climate models and on improved observational constraints.\",\"PeriodicalId\":8611,\"journal\":{\"name\":\"Atmospheric Chemistry and Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Chemistry and Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-1573\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Chemistry and Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1573","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要据估计,目前航空对地球大气的人为有效净辐射强迫(ERF)的贡献约为 3.5%。这种强迫的最大部分来自于卷云(也有很大的相关不确定性,约为 70%),估计比航空二氧化碳排放的贡献大两倍。在这里,我们在英国气象局统一模式(UM)中采用了之前为美国国家大气研究中心(NCAR)的共同体大气模式(CAM)开发的卷云参数。通过首次在两个不同的主机气候模式中使用相同的云雾参数化,这项工作研究了主机气候模式的关键特征对量化云雾卷积辐射影响的影响。我们发现,两个气候模式中背景湿度(尤其是冰过饱和度)的差异导致模拟的卷云比例存在巨大差异,UM 值是 CAM 值的两到三倍。我们还发现,空中交通对全球总云量的影响也截然不同,在 UM 和 CAM 模型中,云雾分别导致总云量的增加和减少。两种模式的云微观物理方案(即 UM 和 CAM 分别采用单瞬云方案和双瞬云方案)的复杂程度不同,导致航空导致的云冰水含量模拟变化存在显著差异。考虑到云微观物理复杂性的差异,我们估计 2018 年的卷云ERF 在 UM 中为 40.8 mWm-2,在 CAM 中为 60.1 mWm-2。虽然这两个估计值并不完全独立,但它们表明,由于两个主机气候模式的微物理和辐射方案不同,卷云ERF存在很大的不确定性(即系数约为2)。我们还发现,由于卷云光学深度的不确定性,卷云卷绕ERF的不确定性系数为8。我们建议,未来研究卷云对气候影响的工作应侧重于在不同气候模式中更好地表现卷云的微观物理和辐射特征,以及改进观测约束条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of host climate model on contrail cirrus effective radiative forcing estimates
Abstract. Aviation is currently estimated to contribute ~3.5 % of the net anthropogenic effective radiative forcing (ERF) of Earth's atmosphere. The largest component of this forcing comes from contrail cirrus (also with a large associated uncertainty of ~70 %), estimated to be two times larger than the contribution from aviation CO2 emissions. Here we implement the contrail parameterisation previously developed for the USA NCAR (National Center for Atmospheric Research) Community Atmosphere Model (CAM) in the UK Met Office Unified Model (UM). By using for the first time the same contrail parameterisation in two different host climate models, this work investigates the impact of key features of the host climate model on quantifying contrail cirrus radiative impacts. We find that differences in the background humidity (in particular ice supersaturation) in the two climate models lead to substantial differences in simulated contrail fractions, with UM values being two to three times as large as those from CAM. We also find contrasting responses in overall global cloud fraction due to air traffic, with contrails causing increases and decreases in total cloud fraction in the UM and in CAM, respectively. The different complexity of the two models’ cloud microphysics schemes (i.e. single and double-moment cloud schemes in the UM and CAM, respectively) results in significant differences in the simulated changes in cloud ice water content due to aviation. When accounting for the difference in cloud microphysics complexity, we estimate the contrail cirrus ERF of the year 2018 to be 40.8 mWm−2 in the UM and 60.1 mWm−2 in CAM. While these two estimates are not entirely independent, they indicate a substantial (i.e. factor of ~2) uncertainty in contrail cirrus ERF from differences in the microphysics and radiation schemes of the two host climate models. We also find a factor of 8 uncertainty in contrail cirrus ERF due to existing uncertainty in contrail cirrus optical depth. We suggest that future work on the contrail cirrus climate impact should focus on better representing the microphysical and radiative contrail characteristics in different climate models and on improved observational constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Chemistry and Physics
Atmospheric Chemistry and Physics 地学-气象与大气科学
CiteScore
10.70
自引率
20.60%
发文量
702
审稿时长
6 months
期刊介绍: Atmospheric Chemistry and Physics (ACP) is a not-for-profit international scientific journal dedicated to the publication and public discussion of high-quality studies investigating the Earth''s atmosphere and the underlying chemical and physical processes. It covers the altitude range from the land and ocean surface up to the turbopause, including the troposphere, stratosphere, and mesosphere. The main subject areas comprise atmospheric modelling, field measurements, remote sensing, and laboratory studies of gases, aerosols, clouds and precipitation, isotopes, radiation, dynamics, biosphere interactions, and hydrosphere interactions. The journal scope is focused on studies with general implications for atmospheric science rather than investigations that are primarily of local or technical interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信