{"title":"开发 mADM-胶原蛋白伤口敷料,用于模拟原生皮肤结构,促进皮肤伤口愈合","authors":"Xiang Wang, Yujia Jiang, Xiaoqin Sun, Chongxia Yue, Zhengyong Li, Yao Wu","doi":"10.1186/s42825-024-00159-5","DOIUrl":null,"url":null,"abstract":"<div><p>Acellular dermal matrix (ADM) is one of the most promising scaffold materials due to its ability to retain natural extracellular matrix structure. Micronized acellular dermal matrix (mADM) was prepared with no intact cell nuclei and preserved growth factors by High Hydrostatic Pressure (HHP) approach. And mADM-collagen wound dressings were developed with different proportion of type I collagen and recombinant humanized type III collagen. The porous structure of the mADM-collagen wound dressings made them a good candidate for preventing excessive fluid accumulation, while the collagens with gel-like texture combined with mADM powder to form pasty texture wound dressing, which preserving the moisture at the wound site. Moreover, the paste texture of the mADM-collagen wound dressing was easy to reshape to conform any wound shapes and body contours. Furthermore, the resulted mADM-collagen wound dressings showed good biocompatibility by supporting fibroblasts adhesion and proliferation in vitro. Subsequently, a murine model of full-thickness skin wounds was employed to assess its effects on wound healing. Notably, mADM-75% Col-I exhibited superior effects throughout the wound healing process, specifically it promoted neovascularization, skin appendage growth and new skin regeneration. This formulation closely mimicked the collagen ratio found in healthy skin, facilitating the favorable wound repair. These results indicated the superior performance of this mADM-collagen wound dressing providing an optimal environment for wound healing.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":640,"journal":{"name":"Journal of Leather Science and Engineering","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00159-5","citationCount":"0","resultStr":"{\"title\":\"Development of mADM-collagen wound dressings for mimicking native skin architecture to enhance skin wound healing\",\"authors\":\"Xiang Wang, Yujia Jiang, Xiaoqin Sun, Chongxia Yue, Zhengyong Li, Yao Wu\",\"doi\":\"10.1186/s42825-024-00159-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acellular dermal matrix (ADM) is one of the most promising scaffold materials due to its ability to retain natural extracellular matrix structure. Micronized acellular dermal matrix (mADM) was prepared with no intact cell nuclei and preserved growth factors by High Hydrostatic Pressure (HHP) approach. And mADM-collagen wound dressings were developed with different proportion of type I collagen and recombinant humanized type III collagen. The porous structure of the mADM-collagen wound dressings made them a good candidate for preventing excessive fluid accumulation, while the collagens with gel-like texture combined with mADM powder to form pasty texture wound dressing, which preserving the moisture at the wound site. Moreover, the paste texture of the mADM-collagen wound dressing was easy to reshape to conform any wound shapes and body contours. Furthermore, the resulted mADM-collagen wound dressings showed good biocompatibility by supporting fibroblasts adhesion and proliferation in vitro. Subsequently, a murine model of full-thickness skin wounds was employed to assess its effects on wound healing. Notably, mADM-75% Col-I exhibited superior effects throughout the wound healing process, specifically it promoted neovascularization, skin appendage growth and new skin regeneration. This formulation closely mimicked the collagen ratio found in healthy skin, facilitating the favorable wound repair. These results indicated the superior performance of this mADM-collagen wound dressing providing an optimal environment for wound healing.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":640,\"journal\":{\"name\":\"Journal of Leather Science and Engineering\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://JLSE.SpringerOpen.com/counter/pdf/10.1186/s42825-024-00159-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Leather Science and Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42825-024-00159-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leather Science and Engineering","FirstCategoryId":"1087","ListUrlMain":"https://link.springer.com/article/10.1186/s42825-024-00159-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
细胞外基质(ADM)能够保留天然细胞外基质结构,是最有前途的支架材料之一。通过高静水压(HHP)方法制备的微粉化细胞外基质(mADM)没有完整的细胞核,并保留了生长因子。并使用不同比例的 I 型胶原蛋白和重组人源化 III 型胶原蛋白开发了 mADM-胶原蛋白伤口敷料。mADM 胶原伤口敷料的多孔结构使其成为防止液体过度积聚的理想选择,而具有凝胶质地的胶原蛋白与 mADM 粉末结合形成糊状质地的伤口敷料,可保持伤口部位的湿度。此外,mADM-胶原蛋白伤口敷料的糊状质地易于重塑,以适应任何伤口形状和身体轮廓。此外,制成的 mADM-胶原伤口敷料在体外支持成纤维细胞的粘附和增殖,表现出良好的生物相容性。随后,我们利用小鼠全厚皮肤伤口模型来评估其对伤口愈合的影响。值得注意的是,mADM-75% Col-I 在整个伤口愈合过程中表现出卓越的效果,特别是它能促进血管新生、皮肤附属物生长和新皮肤再生。这种配方非常接近健康皮肤中的胶原蛋白比例,有利于伤口修复。这些结果表明,这种 mADM 胶原伤口敷料性能优越,可为伤口愈合提供最佳环境。
Development of mADM-collagen wound dressings for mimicking native skin architecture to enhance skin wound healing
Acellular dermal matrix (ADM) is one of the most promising scaffold materials due to its ability to retain natural extracellular matrix structure. Micronized acellular dermal matrix (mADM) was prepared with no intact cell nuclei and preserved growth factors by High Hydrostatic Pressure (HHP) approach. And mADM-collagen wound dressings were developed with different proportion of type I collagen and recombinant humanized type III collagen. The porous structure of the mADM-collagen wound dressings made them a good candidate for preventing excessive fluid accumulation, while the collagens with gel-like texture combined with mADM powder to form pasty texture wound dressing, which preserving the moisture at the wound site. Moreover, the paste texture of the mADM-collagen wound dressing was easy to reshape to conform any wound shapes and body contours. Furthermore, the resulted mADM-collagen wound dressings showed good biocompatibility by supporting fibroblasts adhesion and proliferation in vitro. Subsequently, a murine model of full-thickness skin wounds was employed to assess its effects on wound healing. Notably, mADM-75% Col-I exhibited superior effects throughout the wound healing process, specifically it promoted neovascularization, skin appendage growth and new skin regeneration. This formulation closely mimicked the collagen ratio found in healthy skin, facilitating the favorable wound repair. These results indicated the superior performance of this mADM-collagen wound dressing providing an optimal environment for wound healing.