开发和优化用于预测充血性心力衰竭加重、慢性阻塞性肺病加重和糖尿病酮症酸中毒住院患者费用的机器学习算法。

Monique Arnold, Lathan Liou, Mary Regina Boland
{"title":"开发和优化用于预测充血性心力衰竭加重、慢性阻塞性肺病加重和糖尿病酮症酸中毒住院患者费用的机器学习算法。","authors":"Monique Arnold, Lathan Liou, Mary Regina Boland","doi":"10.21203/rs.3.rs-4490027/v1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hospitalizations for exacerbations of congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and diabetic ketoacidosis (DKA) are costly in the United States. The purpose of this study was to predict in-hospital charges for each condition using machine learning (ML) models.</p><p><strong>Results: </strong>We conducted a retrospective cohort study on national discharge records of hospitalized adult patients from January 1st, 2016, to December 31st, 2019. We used numerous ML techniques to predict in-hospital total cost. We found that linear regression (LM), gradient boosting (GBM) and extreme gradient boosting (XGB) models had good predictive performance and were statistically equivalent, with training R-square values ranging from 0.49-0.95 for CHF, 0.56-0.95 for COPD, and 0.32-0.99 for DKA. We identified important key features driving costs, including patient age, length of stay, number of procedures. and elective/nonelective admission.</p><p><strong>Conclusions: </strong>ML methods may be used to accurately predict costs and identify drivers of high cost for COPD exacerbations, CHF exacerbations and DKA. Overall, our findings may inform future studies that seek to decrease the underlying high patient costs for these conditions.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Optimization of Machine Learning Algorithms for Predicting In-hospital Patient Charges for Congestive Heart Failure Exacerbations, Chronic Obstructive Pulmonary Disease Exacerbations and Diabetic Ketoacidosis.\",\"authors\":\"Monique Arnold, Lathan Liou, Mary Regina Boland\",\"doi\":\"10.21203/rs.3.rs-4490027/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hospitalizations for exacerbations of congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and diabetic ketoacidosis (DKA) are costly in the United States. The purpose of this study was to predict in-hospital charges for each condition using machine learning (ML) models.</p><p><strong>Results: </strong>We conducted a retrospective cohort study on national discharge records of hospitalized adult patients from January 1st, 2016, to December 31st, 2019. We used numerous ML techniques to predict in-hospital total cost. We found that linear regression (LM), gradient boosting (GBM) and extreme gradient boosting (XGB) models had good predictive performance and were statistically equivalent, with training R-square values ranging from 0.49-0.95 for CHF, 0.56-0.95 for COPD, and 0.32-0.99 for DKA. We identified important key features driving costs, including patient age, length of stay, number of procedures. and elective/nonelective admission.</p><p><strong>Conclusions: </strong>ML methods may be used to accurately predict costs and identify drivers of high cost for COPD exacerbations, CHF exacerbations and DKA. Overall, our findings may inform future studies that seek to decrease the underlying high patient costs for these conditions.</p>\",\"PeriodicalId\":94282,\"journal\":{\"name\":\"Research square\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research square\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-4490027/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4490027/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景 在美国,因充血性心力衰竭 (CHF)、慢性阻塞性肺病 (COPD) 和糖尿病酮症酸中毒 (DKA) 恶化而住院的费用很高。本研究的目的是利用机器学习 (ML) 模型预测每种疾病的住院费用。结果 我们对 2016 年 1 月 1 日至 2019 年 12 月 31 日住院成人患者的全国出院记录进行了回顾性队列研究。我们使用了多种 ML 技术来预测院内总费用。我们发现,线性回归 (LM)、梯度提升 (GBM) 和极梯度提升 (XGB) 模型具有良好的预测性能,并且在统计学上具有等效性,其训练 R 平方值分别为:CHF 0.49-0.95, COPD 0.56-0.95, DKA 0.32-0.99。我们确定了影响成本的重要关键特征,包括患者年龄、住院时间、手术次数和选择性/非选择性入院。结论 ML 方法可用于准确预测慢性阻塞性肺病加重、慢性阻塞性肺病加重和 DKA 的成本,并确定导致高成本的因素。总之,我们的研究结果可为今后旨在降低这些疾病潜在高额患者费用的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Optimization of Machine Learning Algorithms for Predicting In-hospital Patient Charges for Congestive Heart Failure Exacerbations, Chronic Obstructive Pulmonary Disease Exacerbations and Diabetic Ketoacidosis.

Background: Hospitalizations for exacerbations of congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and diabetic ketoacidosis (DKA) are costly in the United States. The purpose of this study was to predict in-hospital charges for each condition using machine learning (ML) models.

Results: We conducted a retrospective cohort study on national discharge records of hospitalized adult patients from January 1st, 2016, to December 31st, 2019. We used numerous ML techniques to predict in-hospital total cost. We found that linear regression (LM), gradient boosting (GBM) and extreme gradient boosting (XGB) models had good predictive performance and were statistically equivalent, with training R-square values ranging from 0.49-0.95 for CHF, 0.56-0.95 for COPD, and 0.32-0.99 for DKA. We identified important key features driving costs, including patient age, length of stay, number of procedures. and elective/nonelective admission.

Conclusions: ML methods may be used to accurately predict costs and identify drivers of high cost for COPD exacerbations, CHF exacerbations and DKA. Overall, our findings may inform future studies that seek to decrease the underlying high patient costs for these conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信