维生素 D3 提高异种移植模型中脂肪基质细胞的存活率和人类脂肪移植的保留率

Stem cells and development Pub Date : 2024-09-01 Epub Date: 2024-07-24 DOI:10.1089/scd.2024.0056
Andreea Gavrilescu, Shawn J Loder, Rachel Ricketts, Phoebe Lee, Divya Ramkumar, Bahaa Shaaban, Amr Elmeanawy, Alexandra Vagonis, Jeffrey A Gusenoff, J Peter Rubin, Lauren E Kokai
{"title":"维生素 D3 提高异种移植模型中脂肪基质细胞的存活率和人类脂肪移植的保留率","authors":"Andreea Gavrilescu, Shawn J Loder, Rachel Ricketts, Phoebe Lee, Divya Ramkumar, Bahaa Shaaban, Amr Elmeanawy, Alexandra Vagonis, Jeffrey A Gusenoff, J Peter Rubin, Lauren E Kokai","doi":"10.1089/scd.2024.0056","DOIUrl":null,"url":null,"abstract":"<p><p>Adipose stem cells are considered one of the primary drivers of autologous fat graft biological activity and survival. We have previously demonstrated that hormonally active VD3 improved adipose stem cell viability in ex vivo and in vivo fat grafting models. In this study, we evaluated the inactive form of VD3 (cholecalciferol) on adipose stromal cell (ASC) phenotype during hypoxia and the subsequent effect on human fat graft retention in the xenograft model. Lipoaspirate collected from six human donors was used for ex vivo particle culture studies and isolated ASC studies. Adipose particles were treated with increasing doses of VD3 to determine impact on ASC survival. Expanded stromal cells were treated with VD3 during hypoxic culture and assessed for viability, apoptosis, mitochondrial activity, and nitric oxide (NO) release via caspase, DAF-FM, or TMRM. Finally, 40 Nu/J mice receiving bilateral dorsal human lipoaspirate were treated thrice weekly with (1) vehicle control, (2) 50 ng calcitriol, (3) 50 ng VD3, (4) 500 ng VD3, and (5) 5,000 ng VD3 for 12 weeks, <i>n</i> = 8 per group. Graft weight, volume, and architecture were analyzed. Adipose particles treated with dose-escalating VD3 had significantly increased ASC viability compared with control (<i>P</i> < 0.01). Under hypoxia, ASCs treated with 1 nM VD3 had significantly greater viability than untreated and pretreated cells (<i>P</i> < 0.01, <i>P</i> < 0.01) and significantly lower apoptosis-to-viability ratio (<i>P</i> < 0.01). ASCs pretreated with 1 nM VD3 had significantly lower NO release (<i>P</i> < 0.05) and lower mitochondrial polarization (<i>P</i> < 0.05) compared with controls. In vivo results showed mice receiving 5,000 ng VD3 had significantly greater graft weight (<i>P</i> < 0.05) and volume (<i>P</i> < 0.05) after 12 weeks of treatment compared with controls. Grafts had enhanced neovascularization, intact adipocyte architecture, and absence of oil cysts. VD3 is an over-the-counter nutritional supplement with a known safety profile in humans. Our xenograft model suggests administering VD3 at the time of surgery may significantly improve fat graft retention.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vitamin D3 Improves Adipose Stromal Cell Survival and Human Fat Graft Retention in Xenograft Model.\",\"authors\":\"Andreea Gavrilescu, Shawn J Loder, Rachel Ricketts, Phoebe Lee, Divya Ramkumar, Bahaa Shaaban, Amr Elmeanawy, Alexandra Vagonis, Jeffrey A Gusenoff, J Peter Rubin, Lauren E Kokai\",\"doi\":\"10.1089/scd.2024.0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adipose stem cells are considered one of the primary drivers of autologous fat graft biological activity and survival. We have previously demonstrated that hormonally active VD3 improved adipose stem cell viability in ex vivo and in vivo fat grafting models. In this study, we evaluated the inactive form of VD3 (cholecalciferol) on adipose stromal cell (ASC) phenotype during hypoxia and the subsequent effect on human fat graft retention in the xenograft model. Lipoaspirate collected from six human donors was used for ex vivo particle culture studies and isolated ASC studies. Adipose particles were treated with increasing doses of VD3 to determine impact on ASC survival. Expanded stromal cells were treated with VD3 during hypoxic culture and assessed for viability, apoptosis, mitochondrial activity, and nitric oxide (NO) release via caspase, DAF-FM, or TMRM. Finally, 40 Nu/J mice receiving bilateral dorsal human lipoaspirate were treated thrice weekly with (1) vehicle control, (2) 50 ng calcitriol, (3) 50 ng VD3, (4) 500 ng VD3, and (5) 5,000 ng VD3 for 12 weeks, <i>n</i> = 8 per group. Graft weight, volume, and architecture were analyzed. Adipose particles treated with dose-escalating VD3 had significantly increased ASC viability compared with control (<i>P</i> < 0.01). Under hypoxia, ASCs treated with 1 nM VD3 had significantly greater viability than untreated and pretreated cells (<i>P</i> < 0.01, <i>P</i> < 0.01) and significantly lower apoptosis-to-viability ratio (<i>P</i> < 0.01). ASCs pretreated with 1 nM VD3 had significantly lower NO release (<i>P</i> < 0.05) and lower mitochondrial polarization (<i>P</i> < 0.05) compared with controls. In vivo results showed mice receiving 5,000 ng VD3 had significantly greater graft weight (<i>P</i> < 0.05) and volume (<i>P</i> < 0.05) after 12 weeks of treatment compared with controls. Grafts had enhanced neovascularization, intact adipocyte architecture, and absence of oil cysts. VD3 is an over-the-counter nutritional supplement with a known safety profile in humans. Our xenograft model suggests administering VD3 at the time of surgery may significantly improve fat graft retention.</p>\",\"PeriodicalId\":94214,\"journal\":{\"name\":\"Stem cells and development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem cells and development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/scd.2024.0056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/scd.2024.0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脂肪干细胞被认为是自体脂肪移植生物活性和存活率的主要驱动力之一。我们之前已经证明,在体内外脂肪移植模型中,具有激素活性的VD3能提高脂肪干细胞的存活率。在这项研究中,我们评估了非活性形式的 VD3(胆钙化醇)在缺氧过程中对脂肪基质细胞表型的影响,以及随后对异种移植模型中人类脂肪移植保留的影响。从六名人体捐献者身上采集的脂肪汲取物被用于体内外颗粒培养研究和分离 ASC 研究。用增加剂量的 VD3 处理脂肪颗粒,以确定其对 ASC 存活率的影响。在缺氧培养过程中,用 VD3 处理扩大的基质细胞,并通过 Caspase、DAF-FM 或 TMRM 评估其存活率、凋亡、线粒体活性和一氧化氮释放情况。最后,40 只接受双侧人体背侧吸脂的 Nu/J 小鼠每周三次接受 1) 车辆对照、2) 50ng 降钙三醇、3) 50ng VD3、4) 500ng VD3 和 5) 5000ng VD3 治疗,为期 12 周,每组 8 只。对移植物的重量、体积和结构进行分析。与对照组相比,经剂量递增的 VD3 处理的脂肪颗粒的 ASC 存活率显著增加(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vitamin D3 Improves Adipose Stromal Cell Survival and Human Fat Graft Retention in Xenograft Model.

Adipose stem cells are considered one of the primary drivers of autologous fat graft biological activity and survival. We have previously demonstrated that hormonally active VD3 improved adipose stem cell viability in ex vivo and in vivo fat grafting models. In this study, we evaluated the inactive form of VD3 (cholecalciferol) on adipose stromal cell (ASC) phenotype during hypoxia and the subsequent effect on human fat graft retention in the xenograft model. Lipoaspirate collected from six human donors was used for ex vivo particle culture studies and isolated ASC studies. Adipose particles were treated with increasing doses of VD3 to determine impact on ASC survival. Expanded stromal cells were treated with VD3 during hypoxic culture and assessed for viability, apoptosis, mitochondrial activity, and nitric oxide (NO) release via caspase, DAF-FM, or TMRM. Finally, 40 Nu/J mice receiving bilateral dorsal human lipoaspirate were treated thrice weekly with (1) vehicle control, (2) 50 ng calcitriol, (3) 50 ng VD3, (4) 500 ng VD3, and (5) 5,000 ng VD3 for 12 weeks, n = 8 per group. Graft weight, volume, and architecture were analyzed. Adipose particles treated with dose-escalating VD3 had significantly increased ASC viability compared with control (P < 0.01). Under hypoxia, ASCs treated with 1 nM VD3 had significantly greater viability than untreated and pretreated cells (P < 0.01, P < 0.01) and significantly lower apoptosis-to-viability ratio (P < 0.01). ASCs pretreated with 1 nM VD3 had significantly lower NO release (P < 0.05) and lower mitochondrial polarization (P < 0.05) compared with controls. In vivo results showed mice receiving 5,000 ng VD3 had significantly greater graft weight (P < 0.05) and volume (P < 0.05) after 12 weeks of treatment compared with controls. Grafts had enhanced neovascularization, intact adipocyte architecture, and absence of oil cysts. VD3 is an over-the-counter nutritional supplement with a known safety profile in humans. Our xenograft model suggests administering VD3 at the time of surgery may significantly improve fat graft retention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信