Sifan Chen, Qiao Li, Qinyu Pan, Qiuyan Yin, Liang Yue, Peng Zhang, Gong Chen, Weichao Liu
{"title":"利用近红外光谱对大鼠急性心肌缺血进行无创心脏血液动力学监测:试点研究。","authors":"Sifan Chen, Qiao Li, Qinyu Pan, Qiuyan Yin, Liang Yue, Peng Zhang, Gong Chen, Weichao Liu","doi":"10.1002/jbio.202300474","DOIUrl":null,"url":null,"abstract":"<p>Noninvasive and real-time optical detection of cardiac hemodynamics dysfunction during myocardial ischemia remains challenging. In this study, we developed a near-infrared spectroscopy device to monitor rats' myocardial hemodynamics. The well-designed system can accurately reflect the hemodynamics changes by the classic upper limb ischemia test. Systemic hypoxia by disconnecting to the ventilator and cardiac ischemia by coronary artery slipknot ligation was conducted to monitor myocardial hemodynamics. When systemic hypoxia occurred, ΔHbR and ΔtHb increased significantly, whereas ΔHbO decreased rapidly. When coronary blood flow was obstructed by slipknots, cardiothoracic ΔHbO immediately begins to decline, while ΔHbR also significantly increases. Simultaneously, SpO<sub>2</sub> did not show any obvious changes during myocardial ischemia, while SpO<sub>2</sub> decreased significantly during systemic hypoxia. These results demonstrated that cardiothoracic hemodynamics stemmed from myocardial ischemia. This pilot study demonstrated the practicality of noninvasive, low-cost optical monitoring for cardiac oxygenation dysfunction in rats.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noninvasive cardiac hemodynamics monitoring of acute myocardial ischemia in rats using near-infrared spectroscopy: A pilot study\",\"authors\":\"Sifan Chen, Qiao Li, Qinyu Pan, Qiuyan Yin, Liang Yue, Peng Zhang, Gong Chen, Weichao Liu\",\"doi\":\"10.1002/jbio.202300474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Noninvasive and real-time optical detection of cardiac hemodynamics dysfunction during myocardial ischemia remains challenging. In this study, we developed a near-infrared spectroscopy device to monitor rats' myocardial hemodynamics. The well-designed system can accurately reflect the hemodynamics changes by the classic upper limb ischemia test. Systemic hypoxia by disconnecting to the ventilator and cardiac ischemia by coronary artery slipknot ligation was conducted to monitor myocardial hemodynamics. When systemic hypoxia occurred, ΔHbR and ΔtHb increased significantly, whereas ΔHbO decreased rapidly. When coronary blood flow was obstructed by slipknots, cardiothoracic ΔHbO immediately begins to decline, while ΔHbR also significantly increases. Simultaneously, SpO<sub>2</sub> did not show any obvious changes during myocardial ischemia, while SpO<sub>2</sub> decreased significantly during systemic hypoxia. These results demonstrated that cardiothoracic hemodynamics stemmed from myocardial ischemia. This pilot study demonstrated the practicality of noninvasive, low-cost optical monitoring for cardiac oxygenation dysfunction in rats.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300474\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202300474","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Noninvasive cardiac hemodynamics monitoring of acute myocardial ischemia in rats using near-infrared spectroscopy: A pilot study
Noninvasive and real-time optical detection of cardiac hemodynamics dysfunction during myocardial ischemia remains challenging. In this study, we developed a near-infrared spectroscopy device to monitor rats' myocardial hemodynamics. The well-designed system can accurately reflect the hemodynamics changes by the classic upper limb ischemia test. Systemic hypoxia by disconnecting to the ventilator and cardiac ischemia by coronary artery slipknot ligation was conducted to monitor myocardial hemodynamics. When systemic hypoxia occurred, ΔHbR and ΔtHb increased significantly, whereas ΔHbO decreased rapidly. When coronary blood flow was obstructed by slipknots, cardiothoracic ΔHbO immediately begins to decline, while ΔHbR also significantly increases. Simultaneously, SpO2 did not show any obvious changes during myocardial ischemia, while SpO2 decreased significantly during systemic hypoxia. These results demonstrated that cardiothoracic hemodynamics stemmed from myocardial ischemia. This pilot study demonstrated the practicality of noninvasive, low-cost optical monitoring for cardiac oxygenation dysfunction in rats.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.