用于柔性触感皮肤的硅基压阻应力传感器阵列。

Vartika Verma;Alex Nogué I Torrent;Danko Petrić;Valentin Haberhauer;Ralf Brederlow
{"title":"用于柔性触感皮肤的硅基压阻应力传感器阵列。","authors":"Vartika Verma;Alex Nogué I Torrent;Danko Petrić;Valentin Haberhauer;Ralf Brederlow","doi":"10.1109/TBCAS.2024.3420171","DOIUrl":null,"url":null,"abstract":"Bioinspired robotics and smart prostheses have many applications in the healthcare sector. Patients can use them for rehabilitation or day-to-day assistance, allowing them to regain some agency over their movements. The most common way to make these smart artificial limbs is by adding a “human-like” electronic skin to detect force and emulate touch detection. This paper presents a fully integrated CMOS-based stress sensor design with a high dynamic range (100 kPa to 100 MPa) supported by an adaptive gain-controlled chopping amplifier. The sensor chip includes four identical sensing structures capable of measuring the chip's local stress gradient and complete readout circuitry supporting data transfer via I2C protocol. The sensor takes 10.2 ms to measure through all four structures and goes into a low-power mode when not in use. The designed chip consumes a total current of \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n300 \n<inline-formula><tex-math>$\\boldsymbol{\\mu}$</tex-math></inline-formula>\nA for one complete operation cycle and \n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n30 \n<inline-formula><tex-math>$\\boldsymbol{\\mu}$</tex-math></inline-formula>\nA during low power mode in simulations. Moreover, the complete design is CMOS-based, making it easier for large-scale commercial fabrication and more affordable for patients in the long run. This paper further proposes the concept of a tactile smart skin by integrating a network of sensor chips with flexible polymers.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10575922","citationCount":"0","resultStr":"{\"title\":\"Silicon-Based Piezoresistive Stress Sensor Arrays for Use in Flexible Tactile Skin\",\"authors\":\"Vartika Verma;Alex Nogué I Torrent;Danko Petrić;Valentin Haberhauer;Ralf Brederlow\",\"doi\":\"10.1109/TBCAS.2024.3420171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioinspired robotics and smart prostheses have many applications in the healthcare sector. Patients can use them for rehabilitation or day-to-day assistance, allowing them to regain some agency over their movements. The most common way to make these smart artificial limbs is by adding a “human-like” electronic skin to detect force and emulate touch detection. This paper presents a fully integrated CMOS-based stress sensor design with a high dynamic range (100 kPa to 100 MPa) supported by an adaptive gain-controlled chopping amplifier. The sensor chip includes four identical sensing structures capable of measuring the chip's local stress gradient and complete readout circuitry supporting data transfer via I2C protocol. The sensor takes 10.2 ms to measure through all four structures and goes into a low-power mode when not in use. The designed chip consumes a total current of \\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n300 \\n<inline-formula><tex-math>$\\\\boldsymbol{\\\\mu}$</tex-math></inline-formula>\\nA for one complete operation cycle and \\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n30 \\n<inline-formula><tex-math>$\\\\boldsymbol{\\\\mu}$</tex-math></inline-formula>\\nA during low power mode in simulations. Moreover, the complete design is CMOS-based, making it easier for large-scale commercial fabrication and more affordable for patients in the long run. This paper further proposes the concept of a tactile smart skin by integrating a network of sensor chips with flexible polymers.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10575922\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10575922/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10575922/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物启发机器人和智能假肢在医疗保健领域有许多应用。病人可以使用它们进行康复或日常辅助,让他们重新获得一些控制自己行动的能力。制造这些智能假肢的最常见方法是添加 "类人 "电子皮肤,以检测力和模拟触摸检测。本文介绍了一种基于 CMOS 的全集成应力传感器设计,它具有高动态范围(100 kPa 至 100 MPa),由自适应增益控制斩波放大器提供支持。传感器芯片包括四个相同的传感结构,能够测量芯片的局部应力梯度,以及完整的读出电路,支持通过 I2C 协议进行数据传输。传感器通过所有四个结构进行测量的时间为 10.2 毫秒,不使用时进入低功耗模式。所设计的芯片在一个完整工作周期内的总电流消耗为 ~300 μA,在模拟低功耗模式下的总电流消耗为 ~30 μA。此外,整个设计是基于 CMOS 的,因此更易于大规模商业制造,从长远来看,患者也更能负担得起。本文进一步提出了将传感器芯片网络与柔性聚合物集成在一起的触觉智能皮肤概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Silicon-Based Piezoresistive Stress Sensor Arrays for Use in Flexible Tactile Skin
Bioinspired robotics and smart prostheses have many applications in the healthcare sector. Patients can use them for rehabilitation or day-to-day assistance, allowing them to regain some agency over their movements. The most common way to make these smart artificial limbs is by adding a “human-like” electronic skin to detect force and emulate touch detection. This paper presents a fully integrated CMOS-based stress sensor design with a high dynamic range (100 kPa to 100 MPa) supported by an adaptive gain-controlled chopping amplifier. The sensor chip includes four identical sensing structures capable of measuring the chip's local stress gradient and complete readout circuitry supporting data transfer via I2C protocol. The sensor takes 10.2 ms to measure through all four structures and goes into a low-power mode when not in use. The designed chip consumes a total current of $\sim$ 300 $\boldsymbol{\mu}$ A for one complete operation cycle and $\sim$ 30 $\boldsymbol{\mu}$ A during low power mode in simulations. Moreover, the complete design is CMOS-based, making it easier for large-scale commercial fabrication and more affordable for patients in the long run. This paper further proposes the concept of a tactile smart skin by integrating a network of sensor chips with flexible polymers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信