基于定量质谱的代谢组学的挑战和最新进展。

IF 3 Q2 CHEMISTRY, ANALYTICAL
Nathan Ghafari, Lekha Sleno
{"title":"基于定量质谱的代谢组学的挑战和最新进展。","authors":"Nathan Ghafari,&nbsp;Lekha Sleno","doi":"10.1002/ansa.202400007","DOIUrl":null,"url":null,"abstract":"<p>The field of metabolomics has gained tremendous interest in recent years. Whether the goal is to discover biomarkers related to certain pathologies or to better understand the impact of a drug or contaminant, numerous studies have demonstrated how crucial it is to understand variations in metabolism. Detailed knowledge of metabolic variabilities can lead to more effective treatments, as well as faster or less invasive diagnostics. Exploratory approaches are often employed in metabolomics, using relative quantitation to look at perturbations between groups of samples. Most metabolomics studies have been based on metabolite profiling using relative quantitation, with very few studies using an approach for absolute quantitation. Using accurate quantitation facilitates the comparison between different studies, as well as enabling longitudinal studies. In this review, we discuss the most widely used techniques for quantitative metabolomics using mass spectrometry (MS). Various aspects will be addressed, such as the use of external and/or internal standards, derivatization techniques, in vivo isotopic labelling, or quantitative MS imaging. The principles, as well as the associated limitations and challenges, will be described for each approach.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"5 5-6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210748/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges and recent advances in quantitative mass spectrometry-based metabolomics\",\"authors\":\"Nathan Ghafari,&nbsp;Lekha Sleno\",\"doi\":\"10.1002/ansa.202400007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The field of metabolomics has gained tremendous interest in recent years. Whether the goal is to discover biomarkers related to certain pathologies or to better understand the impact of a drug or contaminant, numerous studies have demonstrated how crucial it is to understand variations in metabolism. Detailed knowledge of metabolic variabilities can lead to more effective treatments, as well as faster or less invasive diagnostics. Exploratory approaches are often employed in metabolomics, using relative quantitation to look at perturbations between groups of samples. Most metabolomics studies have been based on metabolite profiling using relative quantitation, with very few studies using an approach for absolute quantitation. Using accurate quantitation facilitates the comparison between different studies, as well as enabling longitudinal studies. In this review, we discuss the most widely used techniques for quantitative metabolomics using mass spectrometry (MS). Various aspects will be addressed, such as the use of external and/or internal standards, derivatization techniques, in vivo isotopic labelling, or quantitative MS imaging. The principles, as well as the associated limitations and challenges, will be described for each approach.</p>\",\"PeriodicalId\":93411,\"journal\":{\"name\":\"Analytical science advances\",\"volume\":\"5 5-6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210748/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ansa.202400007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ansa.202400007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对代谢组学领域产生了浓厚的兴趣。无论是为了发现与某些病症相关的生物标记物,还是为了更好地了解药物或污染物的影响,大量研究都表明了解代谢的变化是多么重要。对代谢变异的详细了解可以带来更有效的治疗方法,以及更快或更微创的诊断方法。代谢组学通常采用探索性方法,利用相对定量来观察样本组之间的扰动。大多数代谢组学研究都是使用相对定量法进行代谢物分析,很少有研究使用绝对定量法。使用准确的定量方法有利于不同研究之间的比较,也有利于进行纵向研究。在本综述中,我们将讨论最广泛使用的质谱(MS)定量代谢组学技术。本文将讨论各个方面,如外部和/或内部标准的使用、衍生技术、体内同位素标记或定量质谱成像。将介绍每种方法的原理以及相关的局限性和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Challenges and recent advances in quantitative mass spectrometry-based metabolomics

Challenges and recent advances in quantitative mass spectrometry-based metabolomics

The field of metabolomics has gained tremendous interest in recent years. Whether the goal is to discover biomarkers related to certain pathologies or to better understand the impact of a drug or contaminant, numerous studies have demonstrated how crucial it is to understand variations in metabolism. Detailed knowledge of metabolic variabilities can lead to more effective treatments, as well as faster or less invasive diagnostics. Exploratory approaches are often employed in metabolomics, using relative quantitation to look at perturbations between groups of samples. Most metabolomics studies have been based on metabolite profiling using relative quantitation, with very few studies using an approach for absolute quantitation. Using accurate quantitation facilitates the comparison between different studies, as well as enabling longitudinal studies. In this review, we discuss the most widely used techniques for quantitative metabolomics using mass spectrometry (MS). Various aspects will be addressed, such as the use of external and/or internal standards, derivatization techniques, in vivo isotopic labelling, or quantitative MS imaging. The principles, as well as the associated limitations and challenges, will be described for each approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信