{"title":"利用循环生成对抗网络的图像生成人工智能模型提高锥束计算机断层扫描的软组织可见度。","authors":"Motoki Fukuda, Michihito Nozawa, Hironori Akiyama, Eiichiro Ariji, Yoshiko Ariji","doi":"10.1007/s11282-024-00763-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The objective of this study was to enhance the visibility of soft tissues on cone-beam computed tomography (CBCT) using a CycleGAN network trained on CT images.</p><p><strong>Methods: </strong>Training and evaluation of the CycleGAN were conducted using CT and CBCT images collected from Aichi Gakuin University (α facility) and Osaka Dental University (β facility). Synthesized images (sCBCT) output by the CycleGAN network were evaluated by comparing them with the original images (oCBCT) and CT images, and assessments were made using histogram analysis and human scoring of soft-tissue anatomical structures and cystic lesions.</p><p><strong>Results: </strong>The histogram analysis showed that on sCBCT, soft-tissue anatomical structures showed significant shifts in voxel intensity toward values resembling those on CT, with the mean values for all structures approaching those of CT and the specialists' visibility scores being significantly increased. However, improvement in the visibility of cystic lesions was limited.</p><p><strong>Conclusions: </strong>Image synthesis using CycleGAN significantly improved the visibility of soft tissue on CBCT, with this improvement being particularly notable from the submandibular region to the floor of the mouth. Although the effect on the visibility of cystic lesions was limited, there is potential for further improvement through refinement of the training method.</p>","PeriodicalId":56103,"journal":{"name":"Oral Radiology","volume":" ","pages":"508-519"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved soft-tissue visibility on cone-beam computed tomography with an image-generating artificial intelligence model using a cyclic generative adversarial network.\",\"authors\":\"Motoki Fukuda, Michihito Nozawa, Hironori Akiyama, Eiichiro Ariji, Yoshiko Ariji\",\"doi\":\"10.1007/s11282-024-00763-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The objective of this study was to enhance the visibility of soft tissues on cone-beam computed tomography (CBCT) using a CycleGAN network trained on CT images.</p><p><strong>Methods: </strong>Training and evaluation of the CycleGAN were conducted using CT and CBCT images collected from Aichi Gakuin University (α facility) and Osaka Dental University (β facility). Synthesized images (sCBCT) output by the CycleGAN network were evaluated by comparing them with the original images (oCBCT) and CT images, and assessments were made using histogram analysis and human scoring of soft-tissue anatomical structures and cystic lesions.</p><p><strong>Results: </strong>The histogram analysis showed that on sCBCT, soft-tissue anatomical structures showed significant shifts in voxel intensity toward values resembling those on CT, with the mean values for all structures approaching those of CT and the specialists' visibility scores being significantly increased. However, improvement in the visibility of cystic lesions was limited.</p><p><strong>Conclusions: </strong>Image synthesis using CycleGAN significantly improved the visibility of soft tissue on CBCT, with this improvement being particularly notable from the submandibular region to the floor of the mouth. Although the effect on the visibility of cystic lesions was limited, there is potential for further improvement through refinement of the training method.</p>\",\"PeriodicalId\":56103,\"journal\":{\"name\":\"Oral Radiology\",\"volume\":\" \",\"pages\":\"508-519\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11282-024-00763-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11282-024-00763-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Improved soft-tissue visibility on cone-beam computed tomography with an image-generating artificial intelligence model using a cyclic generative adversarial network.
Objectives: The objective of this study was to enhance the visibility of soft tissues on cone-beam computed tomography (CBCT) using a CycleGAN network trained on CT images.
Methods: Training and evaluation of the CycleGAN were conducted using CT and CBCT images collected from Aichi Gakuin University (α facility) and Osaka Dental University (β facility). Synthesized images (sCBCT) output by the CycleGAN network were evaluated by comparing them with the original images (oCBCT) and CT images, and assessments were made using histogram analysis and human scoring of soft-tissue anatomical structures and cystic lesions.
Results: The histogram analysis showed that on sCBCT, soft-tissue anatomical structures showed significant shifts in voxel intensity toward values resembling those on CT, with the mean values for all structures approaching those of CT and the specialists' visibility scores being significantly increased. However, improvement in the visibility of cystic lesions was limited.
Conclusions: Image synthesis using CycleGAN significantly improved the visibility of soft tissue on CBCT, with this improvement being particularly notable from the submandibular region to the floor of the mouth. Although the effect on the visibility of cystic lesions was limited, there is potential for further improvement through refinement of the training method.
期刊介绍:
As the official English-language journal of the Japanese Society for Oral and Maxillofacial Radiology and the Asian Academy of Oral and Maxillofacial Radiology, Oral Radiology is intended to be a forum for international collaboration in head and neck diagnostic imaging and all related fields. Oral Radiology features cutting-edge research papers, review articles, case reports, and technical notes from both the clinical and experimental fields. As membership in the Society is not a prerequisite, contributions are welcome from researchers and clinicians worldwide.