{"title":"免疫性血小板减少症:病理生理学和罗米波司汀治疗的影响。","authors":"","doi":"10.1016/j.blre.2024.101222","DOIUrl":null,"url":null,"abstract":"<div><p>Immune thrombocytopenia (ITP) is an autoimmune bleeding disease caused by immune-mediated platelet destruction and decreased platelet production. ITP is characterized by an isolated thrombocytopenia (<100 × 10<sup>9</sup>/L) and increased risk of bleeding. The disease has a complex pathophysiology wherein immune tolerance breakdown leads to platelet and megakaryocyte destruction. Therapeutics such as corticosteroids, intravenous immunoglobulins (IVIg), rituximab, and thrombopoietin receptor agonists (TPO-RAs) aim to increase platelet counts to prevent hemorrhage and increase quality of life. TPO-RAs act via stimulation of TPO receptors on megakaryocytes to directly stimulate platelet production. Romiplostim is a TPO-RA that has become a mainstay in the treatment of ITP. Treatment significantly increases megakaryocyte maturation and growth leading to improved platelet production and it has recently been shown to have additional immunomodulatory effects in treated patients. This review will highlight the complex pathophysiology of ITP and discuss the usage of Romiplostim in ITP and its ability to potentially immunomodulate autoimmunity.</p></div>","PeriodicalId":56139,"journal":{"name":"Blood Reviews","volume":"67 ","pages":"Article 101222"},"PeriodicalIF":6.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0268960X24000559/pdfft?md5=1c8588478182d414ca3ddab3c9877c79&pid=1-s2.0-S0268960X24000559-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Immune thrombocytopenia: Pathophysiology and impacts of Romiplostim treatment\",\"authors\":\"\",\"doi\":\"10.1016/j.blre.2024.101222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Immune thrombocytopenia (ITP) is an autoimmune bleeding disease caused by immune-mediated platelet destruction and decreased platelet production. ITP is characterized by an isolated thrombocytopenia (<100 × 10<sup>9</sup>/L) and increased risk of bleeding. The disease has a complex pathophysiology wherein immune tolerance breakdown leads to platelet and megakaryocyte destruction. Therapeutics such as corticosteroids, intravenous immunoglobulins (IVIg), rituximab, and thrombopoietin receptor agonists (TPO-RAs) aim to increase platelet counts to prevent hemorrhage and increase quality of life. TPO-RAs act via stimulation of TPO receptors on megakaryocytes to directly stimulate platelet production. Romiplostim is a TPO-RA that has become a mainstay in the treatment of ITP. Treatment significantly increases megakaryocyte maturation and growth leading to improved platelet production and it has recently been shown to have additional immunomodulatory effects in treated patients. This review will highlight the complex pathophysiology of ITP and discuss the usage of Romiplostim in ITP and its ability to potentially immunomodulate autoimmunity.</p></div>\",\"PeriodicalId\":56139,\"journal\":{\"name\":\"Blood Reviews\",\"volume\":\"67 \",\"pages\":\"Article 101222\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0268960X24000559/pdfft?md5=1c8588478182d414ca3ddab3c9877c79&pid=1-s2.0-S0268960X24000559-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268960X24000559\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268960X24000559","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Immune thrombocytopenia: Pathophysiology and impacts of Romiplostim treatment
Immune thrombocytopenia (ITP) is an autoimmune bleeding disease caused by immune-mediated platelet destruction and decreased platelet production. ITP is characterized by an isolated thrombocytopenia (<100 × 109/L) and increased risk of bleeding. The disease has a complex pathophysiology wherein immune tolerance breakdown leads to platelet and megakaryocyte destruction. Therapeutics such as corticosteroids, intravenous immunoglobulins (IVIg), rituximab, and thrombopoietin receptor agonists (TPO-RAs) aim to increase platelet counts to prevent hemorrhage and increase quality of life. TPO-RAs act via stimulation of TPO receptors on megakaryocytes to directly stimulate platelet production. Romiplostim is a TPO-RA that has become a mainstay in the treatment of ITP. Treatment significantly increases megakaryocyte maturation and growth leading to improved platelet production and it has recently been shown to have additional immunomodulatory effects in treated patients. This review will highlight the complex pathophysiology of ITP and discuss the usage of Romiplostim in ITP and its ability to potentially immunomodulate autoimmunity.
期刊介绍:
Blood Reviews, a highly regarded international journal, serves as a vital information hub, offering comprehensive evaluations of clinical practices and research insights from esteemed experts. Specially commissioned, peer-reviewed articles authored by leading researchers and practitioners ensure extensive global coverage across all sub-specialties of hematology.