通过部分反馈线性化分析和控制双足运动模型

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Hasan Hamzaçebi, Ismail Uyanik, Ömer Morgül
{"title":"通过部分反馈线性化分析和控制双足运动模型","authors":"Hasan Hamzaçebi, Ismail Uyanik, Ömer Morgül","doi":"10.1088/1748-3190/ad5cb6","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduce a new model for bipedal locomotion that enhances the classical spring-loaded inverted pendulum (SLIP) model. Our proposed model incorporates a damping term in the leg spring, a linear actuator serially interconnected to the leg, and a rotary actuator affixed to the hip. The distinct feature of this new model is its ability to overcome the non-integrability challenge inherent in the conventional SLIP models through the application of partial feedback linearization. By leveraging these actuators, our model enhances the stability and robustness of the locomotion mechanism, particularly when navigating across varied terrain profiles. To validate the effectiveness and practicality of this model, we conducted detailed simulation studies, benchmarking its performance against other recent models outlined in the literature. Our findings suggest that the redundancy in actuation introduced by our model significantly facilitates both open-loop and closed-loop walking gait, showcasing promising potential for the future of bipedal locomotion, especially for bio-inspired robotics applications in outdoor and rough terrains.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the analysis and control of a bipedal legged locomotion model via partial feedback linearization.\",\"authors\":\"Hasan Hamzaçebi, Ismail Uyanik, Ömer Morgül\",\"doi\":\"10.1088/1748-3190/ad5cb6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we introduce a new model for bipedal locomotion that enhances the classical spring-loaded inverted pendulum (SLIP) model. Our proposed model incorporates a damping term in the leg spring, a linear actuator serially interconnected to the leg, and a rotary actuator affixed to the hip. The distinct feature of this new model is its ability to overcome the non-integrability challenge inherent in the conventional SLIP models through the application of partial feedback linearization. By leveraging these actuators, our model enhances the stability and robustness of the locomotion mechanism, particularly when navigating across varied terrain profiles. To validate the effectiveness and practicality of this model, we conducted detailed simulation studies, benchmarking its performance against other recent models outlined in the literature. Our findings suggest that the redundancy in actuation introduced by our model significantly facilitates both open-loop and closed-loop walking gait, showcasing promising potential for the future of bipedal locomotion, especially for bio-inspired robotics applications in outdoor and rough terrains.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad5cb6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad5cb6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们引入了一种新的双足运动模型,该模型增强了经典的弹簧加载倒摆(SLIP)模型。我们提出的模型在腿部弹簧、与腿部串联的线性致动器和固定在髋部的旋转致动器中加入了阻尼项。这种新模型的显著特点是能够通过应用部分反馈线性化克服传统 SLIP 模型固有的不可控性难题。通过利用这些致动器,我们的模型增强了运动机制的稳定性和鲁棒性,尤其是在穿越不同地形剖面时。为了验证该模型的有效性和实用性,我们进行了详细的模拟研究,并将其性能与文献中概述的其他最新模型进行了比较。我们的研究结果表明,我们的模型引入的执行冗余大大促进了开环和闭环行走步态,为未来的双足运动展示了巨大的潜力,尤其是在户外和崎岖地形中的生物启发机器人应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the analysis and control of a bipedal legged locomotion model via partial feedback linearization.

In this study, we introduce a new model for bipedal locomotion that enhances the classical spring-loaded inverted pendulum (SLIP) model. Our proposed model incorporates a damping term in the leg spring, a linear actuator serially interconnected to the leg, and a rotary actuator affixed to the hip. The distinct feature of this new model is its ability to overcome the non-integrability challenge inherent in the conventional SLIP models through the application of partial feedback linearization. By leveraging these actuators, our model enhances the stability and robustness of the locomotion mechanism, particularly when navigating across varied terrain profiles. To validate the effectiveness and practicality of this model, we conducted detailed simulation studies, benchmarking its performance against other recent models outlined in the literature. Our findings suggest that the redundancy in actuation introduced by our model significantly facilitates both open-loop and closed-loop walking gait, showcasing promising potential for the future of bipedal locomotion, especially for bio-inspired robotics applications in outdoor and rough terrains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信