单克隆抗体片段在水油界面的吸附:粗粒度分子动力学研究。

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
APL Bioengineering Pub Date : 2024-06-25 eCollection Date: 2024-06-01 DOI:10.1063/5.0207959
Suman Saurabh, Li Lei, Zongyi Li, John M Seddon, Jian R Lu, Cavan Kalonia, Fernando Bresme
{"title":"单克隆抗体片段在水油界面的吸附:粗粒度分子动力学研究。","authors":"Suman Saurabh, Li Lei, Zongyi Li, John M Seddon, Jian R Lu, Cavan Kalonia, Fernando Bresme","doi":"10.1063/5.0207959","DOIUrl":null,"url":null,"abstract":"<p><p>Monoclonal antibodies (mAbs) can undergo structural changes due to interaction with oil-water interfaces during storage. Such changes can lead to aggregation, resulting in a loss of therapeutic efficacy. Therefore, understanding the microscopic mechanism controlling mAb adsorption is crucial to developing strategies that can minimize the impact of interfaces on the therapeutic properties of mAbs. In this study, we used MARTINI coarse-grained molecular dynamics simulations to investigate the adsorption of the Fab and Fc domains of the monoclonal antibody COE3 at the oil-water interface. Our aim was to determine the regions on the protein surface that drive mAb adsorption. We also investigate the role of protein concentration on protein orientation and protrusion to the oil phase. While our structural analyses compare favorably with recent neutron reflectivity measurements, we observe some differences. Unlike the monolayer at the interface predicted by neutron reflectivity experiments, our simulations indicate the presence of a secondary diffused layer near the interface. We also find that under certain conditions, protein-oil interaction can lead to a considerable distortion in the protein structure, resulting in enhanced adsorption behavior.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adsorption of monoclonal antibody fragments at the water-oil interface: A coarse-grained molecular dynamics study.\",\"authors\":\"Suman Saurabh, Li Lei, Zongyi Li, John M Seddon, Jian R Lu, Cavan Kalonia, Fernando Bresme\",\"doi\":\"10.1063/5.0207959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monoclonal antibodies (mAbs) can undergo structural changes due to interaction with oil-water interfaces during storage. Such changes can lead to aggregation, resulting in a loss of therapeutic efficacy. Therefore, understanding the microscopic mechanism controlling mAb adsorption is crucial to developing strategies that can minimize the impact of interfaces on the therapeutic properties of mAbs. In this study, we used MARTINI coarse-grained molecular dynamics simulations to investigate the adsorption of the Fab and Fc domains of the monoclonal antibody COE3 at the oil-water interface. Our aim was to determine the regions on the protein surface that drive mAb adsorption. We also investigate the role of protein concentration on protein orientation and protrusion to the oil phase. While our structural analyses compare favorably with recent neutron reflectivity measurements, we observe some differences. Unlike the monolayer at the interface predicted by neutron reflectivity experiments, our simulations indicate the presence of a secondary diffused layer near the interface. We also find that under certain conditions, protein-oil interaction can lead to a considerable distortion in the protein structure, resulting in enhanced adsorption behavior.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0207959\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0207959","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

单克隆抗体(mAbs)在储存过程中会因与油水界面的相互作用而发生结构变化。这种变化会导致聚集,从而失去疗效。因此,了解控制 mAb 吸附的微观机制对于开发可最大限度减少界面对 mAb 治疗特性影响的策略至关重要。在这项研究中,我们利用 MARTINI 粗粒度分子动力学模拟研究了单克隆抗体 COE3 的 Fab 和 Fc 结构域在油水界面的吸附情况。我们的目的是确定驱动 mAb 吸附的蛋白质表面区域。我们还研究了蛋白质浓度对蛋白质定向和向油相突出的作用。虽然我们的结构分析与最近的中子反射测量结果相比效果良好,但我们也观察到了一些差异。与中子反射实验所预测的界面单层不同,我们的模拟结果表明界面附近存在次生扩散层。我们还发现,在某些条件下,蛋白质与油的相互作用会导致蛋白质结构发生相当大的扭曲,从而增强吸附行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption of monoclonal antibody fragments at the water-oil interface: A coarse-grained molecular dynamics study.

Monoclonal antibodies (mAbs) can undergo structural changes due to interaction with oil-water interfaces during storage. Such changes can lead to aggregation, resulting in a loss of therapeutic efficacy. Therefore, understanding the microscopic mechanism controlling mAb adsorption is crucial to developing strategies that can minimize the impact of interfaces on the therapeutic properties of mAbs. In this study, we used MARTINI coarse-grained molecular dynamics simulations to investigate the adsorption of the Fab and Fc domains of the monoclonal antibody COE3 at the oil-water interface. Our aim was to determine the regions on the protein surface that drive mAb adsorption. We also investigate the role of protein concentration on protein orientation and protrusion to the oil phase. While our structural analyses compare favorably with recent neutron reflectivity measurements, we observe some differences. Unlike the monolayer at the interface predicted by neutron reflectivity experiments, our simulations indicate the presence of a secondary diffused layer near the interface. We also find that under certain conditions, protein-oil interaction can lead to a considerable distortion in the protein structure, resulting in enhanced adsorption behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信